
Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -1-

Annex Document Y - Assertion
Normative

v0.9
April 26, 2016

0

SAE Technical Standards Board Rules provide that: This report is published by SAE to advance the state of technical and
engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use,
including any patent infringement arising therefrom, is the sole responsibility of the user.

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE
invites your written comments and suggestions.

Copyright c©2015 SAE International
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by

any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.
TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada) 724-776-4970 (outside USA)
Fax: 724-776-0790 Email: custsvc@sae.org SAE WEB ADDRESS: http://www.sae.org

Introduction

(1) This document is an annex standard of SAE Standard AS5506B, Architecture Analysis and Design
Language (AADL) to define an annex sublanguage of AADL defining declarative, temporal logic, asser-
tions.

(2) This assertion language was developed as part of the Behavior Language for Embedded Systems
with Software (BLESS), but has been standardized separately from BLESS so that it can be used
independently.

(3) Assertions can be attached to ports, as properties, to specify what is guaranteed to be true of events or
data emitted from an out port, or assumed about events or data received by an in port. Assertions can
also be used to define component invariants, much like loop invariants. Thus a component’s behavior
can be formally, declaratively, specified by its port assertion properties and its invariant property.

(4) Assertions may have labels. Labeled assertions may be referenced by other assertions, possible with
parameters. Assertion labels may be replaced in other assertions with their bodies, having actual
parameters substituted for formal parameters, if any.

(5) Assertions are basically first-order predicates, that have been augmented with simple temporal operators
that determine when predicates are evaluated.

2

Contents

Y.1 Scope 5

Y.2 Assertion 6
Y.2.1 Assertion Annex Library . 6
Y.2.2 Assertion . 7

Y.2.2.1 Formal Assertion Parameter . 7
Y.2.2.2 Assertion-Predicate . 8
Y.2.2.3 Assertion-Function . 9
Y.2.2.4 Assertion-Enumeration . 9

Y.2.3 Predicate . 10
Y.2.3.1 Subpredicate . 11
Y.2.3.2 Timed Predicate . 11
Y.2.3.3 Time-Expression . 12
Y.2.3.4 Period-Shift . 13
Y.2.3.5 Predicate Invocation . 14
Y.2.3.6 Predicate Relations . 14
Y.2.3.7 Parenthesized Predicate . 15
Y.2.3.8 Universal Quantification . 16
Y.2.3.9 Existential Quantification . 16
Y.2.3.10 Event . 17

Y.2.4 Assertion-Expression . 17
Y.2.4.1 Timed Expression . 19
Y.2.4.2 Parenthesized Assertion Expression . 20
Y.2.4.3 Assertion-Value . 20
Y.2.4.4 Conditional Assertion Expression . 20
Y.2.4.5 Conditional Assertion Function . 21
Y.2.4.6 Assertion-Function Invocation . 22
Y.2.4.7 Assertion-Enumeration Invocation . 22

Y.3 Names and Values 25
Y.3.1 Value Constant . 25

3

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -4-

Y.3.1.1 Property Constant . 25
Y.3.1.2 Property Reference . 26

Y.3.2 Assertion Name . 26
Y.3.3 Port Value . 27

Y.4 Lexicon 29
Y.4.1 Character Set . 29
Y.4.2 Lexical Elements, Separators, and Delimiters . 30
Y.4.3 Identifiers . 31
Y.4.4 Numeric Literals . 32

Y.4.4.1 Decimal Literals . 32
Y.4.4.2 Based Literals . 32
Y.4.4.3 Rational Literals . 33
Y.4.4.4 Complex Literals . 33

Y.4.5 String Literals . 33
Y.4.6 Comments . 33

Y.5 Alphabetized Grammar 35

Index 42

Contents Contents

Chapter Y.1
Scope

5

Chapter Y.2
Assertion

(1) Assertion properties may be attached to AADL component features, behavior states, interlaced through
actions, or express invariants, and have three forms: predicates, functions, and enumerations.

(2) Assertion annex libraries hold labelled Assertions in AADL packages.

(3) Assertion-predicates declare truth.

(4) Assertion-functions declare value. Assertion-functions specify meaning for data ports or other things
with value, or used with other Assertion-functions or Assertions.

(5) Meaning for enumeration-typed ports and variables use Assertion-enumerations –a kind of Assertion-
function with special grammar associating enumeration identifiers with predicates.

Annex Y.2.1 Assertion Annex Library

(1) AADL packages may have annex libraries, not attached to any particular component.1 An annex library
is distinguished by the reserved word annex, followed by the identifier of the annex, and user-defined
text between {** and **}, terminated with a semicolon.

(2) An Assertion annex library contains at least one Assertion.

assertion_annex_library ::= annex Assertion {** { assertion }+ **} ;

Example

AADL source code for an Assertion annex library used in the definition of behavior of a pulse oxime-
ter:� �
annex Assertion
{** --annex library holding BLESS Assertions

1AS5506B §4.8 Annex Subclauses and Annex Libraries

6

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -7-

<<SPO2_LOWER_LIMIT_ALARM: :SensorConnected and not MotionArtifact and
(SpO2 < SpO2LowerLimit)>>

<<HEART_RATE_LOWER_LIMIT_ALARM: :SensorConnected and not MotionArtifact and
(HeartRate < HeartRateLowerLimit)>>

<<HEART_RATE_UPPER_LIMIT_ALARM: :SensorConnected and not MotionArtifact and
(HeartRate > HeartRateUpperLimit)>>

<<SPO2_AVERAGE: :=
--the sum of good SpO2 measurements
(sum i:integer in -SpO2MovingAvgWindowSamples..-1 of

(SensorConnectedˆ(i) and not MotionArtifactˆ(i)??SpO2ˆ(i):0))
/ --divided by the number of good SpO2 measurements
(numberof i:integer in -SpO2MovingAvgWindowSamples..-1
that (SensorConnectedˆ(i) and not MotionArtifactˆ(i)))>>

<<SUPPL_O2_ALARM: :SupplOxyAlarmEnabledˆ0 and
(SPO2_AVERAGE())ˆ0 < (SpO2LowerLimitˆ0+SpO2LevelAdjˆ0)>>

<<RAPID_DECLINE_ALARM: :AdultRapidDeclineAlarmEnabled and
(exists j:integer in 1 .. NUM_WINDOW_SAMPLES()
that (SpO2 <= (SpO2ˆ(-j) - MaxSpO2Decline)))>>

<<MOTION_ARTIFACT_ALARM: :all j:integer
in 0 ..PulseOx_Properties::Motion_Artifact_Sample_Limit
are (MotionArtifactˆ(-j) or not SensorConnectedˆ(-j))>>

<<SPO2_TREND: : all s:integer in 1 ..num_samples
are SpO2Trend[s]=(MotionArtifactˆ(-s) or
not SensorConnectedˆ(-s)??0:SpO2ˆ(-s))>>

<<HR_TREND: : all s:integer in 1 ..num_samples are HeartRateTrend[s]=
(MotionArtifactˆ(-s) or not SensorConnectedˆ(-s)??0:HeartRateˆ(-s))>>

<<AXIOM_CR: :(num_samples-2)<(num_samples-1)>>
**};� �
Annex Y.2.2 Assertion

(1) In Behavior Language for Embedded Systems with Software (BLESS), an Assertion is a temporal logic
formula enclosed between << and >>.
assertion ::=
<< (assertion_predicate
| assertion_function
| assertion_enumeration
| assertion_enumeration_invocation) >>

Annex Y.2.2.1 Formal Assertion Parameter

(1) Assertions may have formal parameters.

formal_assertion_parameter ::= parameter_identifier [˜ type_name]

formal_assertion_parameter_list ::= formal_assertion_parameter { (,) formal_assertion_parameter }*

Chapter Y.2. Assertion Y.2.2. Assertion

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -8-

Types for assertion parameters may be data component names, or the reserved word for one of the
built-in BLESS types. Types and type checking is defined in .

type_name ::=
{ package_identifier :: }* data_component_identifier

[. implementation_identifier]
| natural | integer | rational | real
| complex | time | string

Annex Y.2.2.2 Assertion-Predicate

(1) Most Assertions will be predicates and may have a label by which other Assertions can refer to it.
An assertion-predicate may have formal parameters. If so an assertion-predicate’s meaning is textual
substitution of actual parameter for formal parameters throughout the body of the Assertion.2

assertion_predicate ::=
[label_identifier : [formal_assertion_parameter_list] :] predicate

(2) If an Assertion has no parameters, occurrences of its invocation may be replaced by the text of its
predicate. If a Assertion has parameters, its label and actual parameters, may be replaced by its
predicate with formal parameters replaced by actual parameters.

(3) Any entity may have its BLESS::Assertion property associated with the label of an Assertion in a
Assertion annex library.

(4) Semantics for use of Assertion-predicates, substitution of actual parameters for formal parameters, is
defined in Y.2.3.5, Predicate Invocation.

Example

AADL source code for Assertions used in the definition of behavior of a cardiac pacemaker:� �
<<LRL:x: --Lower Rate Limit

-- there has been a V-pace or a non-refractory V-sense
exists t:BLESS_Types::Time
-- within the previous LRL interval
in (x-max_cci)..x --MaxCCI is the maximum cardiac cycle interval
-- in which a heartbeat was sensed, or caused by pacing
that (vs or vp)@t >>

<<LAST_A_WAS_AS:x: exists t:BLESS_Types::Time in x-max_cci..x that
(as@t and --A-sense at time t

not (exists t2:BLESS_Types::Time in t,,x that --no as or ap since
(as@t2 or ap@t2))) >>

<<ATR_DURATION:d dur_met: --wait to be sure a-tachy continues
ATR_DETECT(d) and --detection met at time d
(dur > (numberof t:BLESS_Types::Time in d..dur_met that (vs@t or sp@t)))
and (all t2:BLESS_Types::Time in d..dur_met are not ATR_END(t2)) >>� �
2If an Assumption has a label, but no parameters, leave a space between to colons so the lexical analyzer emits two colon tokens,

not one double-colon token.

Chapter Y.2. Assertion Y.2.2. Assertion

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -9-

Annex Y.2.2.3 Assertion-Function

(1) An Assertion-function abstracts a value, usually numeric. Labeled Assertion-functions may be used in
Assertion-expressions.

assertion_function ::=
[label_identifier : [formal_assertion_parameter_list]]
:= (assertion_expression | conditional_assertion_function)

(2) Semantics for use of Assertion-functions, substitution of actual parameters for formal parameters, is
defined in Y.2.4.6, Assertion Function Invocation.

Example

An Assertion-function defining a moving average, neglecting bad measurements:� �
<<SPO2_AVERAGE: :=

--the sum of good SpO2 measurements
(sum i:integer in -SpO2MovingAvgWindowSamples..-1 of

(SensorConnectedˆ(i) and not MotionArtifactˆ(i)??SpO2ˆ(i):0))
/ --divided by the number of good SpO2 measurements
(numberof i:integer in -SpO2MovingAvgWindowSamples..-1
that (SensorConnectedˆ(i) and not MotionArtifactˆ(i)))>>� �

An Assertion-function that determines the maximum cardiac cycle interval during atrial tachycardia
response fall back:� �
<<FallBack_MaxCCI:dur_met x:= (x-dur_met)*((lrl-url)/fb_time)>>� �
Annex Y.2.2.4 Assertion-Enumeration

(1) An Assertion-enumeration associates an Assertion with elements (identifiers) of enumeration types.
Assertion-enumerations are usually used as a data port property having enumeration type to define
what is true about the system for different elements.

(2) An Assertion-enumeration has one parameter for the enumeration value sent or received by an event
data port

assertion_enumeration ::=
asserion_enumeration_label_identifier : parameter_identifier +=>
enumeration_pair { , enumeration_pair }*

enumeration_pair ::= enumeration_literal_identifier -> predicate

(3) Semantics for use of Assertion-enumerations, selection of enumeration pair matching given enumeration
value, is defined in Y.2.4.7, Assertion Enumeration Invocation.

Example� �
<<ALARM_TYPE: x +=> --has enumeration value of first element

--when predicate in 2nd element is true

Chapter Y.2. Assertion Y.2.2. Assertion

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -10-

Pump_Overheated->PUMP_OVERHEATED,
Defective_Battery->DEFECTIVE_BATTERY,
Low_Battery->LOW_BATTERY,
POST_Failure->POST_FAIL,
RAM_Failure->RAM_FAIL,
ROM_failure->ROM_FAIL,
CPU_Failure->CPU_FAIL,
Thread_Monitor_Failure->THREAD_MONITOR_FAIL,
Air_In_Line->AIR_IN_LINE,
Upstream_Occlusion->UPSTREAM_OCCLUSION,
Downstream_Occlusion->DOWNSTREAM_OCCLUSION,
Empty_Reservoir->EMPTY_RESERVOIR,
Basal_Overinfusion->BASAL_OVERINFUSION,
Bolus_Overinfusion->BOLUS_OVERINFUSION,
Square_Bolus_Overinfusion->SQUARE_OVERINFUSION,
No_Alarm->NO_ALARM >>� �

Annex Y.2.3 Predicate

(1) A predicate is a boolean valued function, when evaluated returns true or false. A Assertion claims its
predicate is true. The meaning of the logical operators within a predicate have customary meanings.
Universal quantification is defined in Y.2.3.8, and existential quantification is defined in D Y.2.3.9.

predicate ::=
universal_quantification | existential_quantification |
subpredicate

[{ and subpredicate }+
| { or subpredicate }+
| { xor subpredicate }+
| implies subpredicate
| iff subpredicate
| -> subpredicate]

Semantics

(S1) Where i is an interval, and A,B are predicate atoms:

Mi~A and B� ≡ Mi~A� ∧Mi~B� (the meaning of and is conjunction)
Mi~A or B� ≡ Mi~A� ∨Mi~B� (the meaning of or is disjunction)
Mi~A xor B� ≡ Mi~A� ⊕Mi~B� (the meaning of xor is exclusive-disjunction)
Mi~A implies B� ≡ Mi~A�→ Mi~B� (the meaning of implies is implication)
Mi~A iff B� ≡ Mi~A�↔ Mi~B� (the meaning of iff is if-and-only-if)
Mi~A -> B� ≡ Mi~A�→ Mi~B� (the meaning of -> is implication)

Example� �
<<(goodSamp[ub mod PulseOx_Properties::Max_Window_Samples] iff

Chapter Y.2. Assertion Y.2.3. Predicate

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -11-

(SensorConnectedˆ0 and not MotionArtifactˆ0)) and GS()>>� �
Annex Y.2.3.1 Subpredicate

(1) The meaning of true, false, and not within a predicate have customary meanings. Both paren-
thesized predicate and name may be followed by a time expression. Being able to express when a
predicate will be true makes this a temporal logic able to express useful properties of embedded sys-
tems. Predicate invocation is defined in D Y.2.3.5.

(2) The reserved word def defines a “logic variable” that represents an unknown, or changing value.

subpredicate ::=
[not]
(true | false | stop
| predicate_relation
| timed_predicate
| event_expression
| def logic_variable_identifier)

Semantics

(S2) Where i is an interval, and A is the rest of a subpredicate:

Mi~not A� ≡ ¬Mi~A� (the meaning of not is negation)
M~def D� ≡ ∃D (the meaning of def is definition)
M~stop� ≡ stop?
(the meaning of stop is arrival of event at pre-declared stop port implicit for all AADL components)

Annex Y.2.3.2 Timed Predicate

(1) In a timed predicate, the time when the predicate holds may be specified. The ’ means the predicate
will be true one clock cycle (or thread period) hence; the @ means the predicate is true when the
subexpression, in seconds, is the current time; and the ˆ means the predicate is true an integer number
of clock ticks from now. Grammatically, time expression (Y.2.3.3) and period-shift (D Y.2.3.4) are time-
free (e.g. no ’ @ or ˆ within). Grammar and meaning of a name is defined in ?? Name.

timed_predicate ::=
(name | parenthesized_predicate | predicate_invocation)
[’ | @ time_expression | ˆ integer_expression]

Legality Rules

(L1) When using @, the subexpression must have a time type such as, Timing_Properties::Time.

(L2) When using ˆ, the value must have integer type.

Semantics

Chapter Y.2. Assertion Y.2.3. Predicate

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -12-

(S3) Where P is a name or a parenthesized predicate, t is a time, d is the duration of a thread’s period, and
k is a period-shift:

M~P@t� ≡ Mt~P� (the meaning of P@t is the meaning of P at time t)
Mt~Pˆk� ≡ Mt+dk~P�
(the meaning of Pˆk at time t, is the meaning of P, k period durations hence, or earlier if k < 0)
Mt~P’� ≡ Mt~Pˆ1� ≡ Mt+d~P� (the meaning of P’ at time t, is the meaning of P a period duration
hence)

Example� �
<<VS:x: --ventricular sense
sv@x --sensing ventricle enabled
and v@x --v-signal
and not tnv@x --not noisy
and VRP_EXPIRED(x) >> --not ventricular refractory period

<<HR_TREND: : all s:integer in 1..num_samples
are HeartRateTrend[s]=(MotionArtifactˆ(-s)
or not SensorConnectedˆ(-s)??0:HeartRateˆ(-s))>>� �

Annex Y.2.3.3 Time-Expression

(1) Both timed predicate (Y.2.3.2 Timed Predicate) and timed expression (Y.2.4.1 Timed Expression) require
a time-expression when using @ to define when a predicate holds. A time-expression must have type
time, and must not use @.

time_expression ::=
time_subexpression
| time_subexpression - time_subexpression
| time_subexpression / time_subexpression
| time_subexpression { + time_subexpression
| time_subexpression { * time_subexpression }+

time_subexpression ::= [-]
(time_assertion_value
| (time_expression)
| assertion_function_invocation)

Legality Rule

(L3) Every time expression must have time type.

Semantics

(S4) Where e and f are time values (real),

Mi~e+f� ≡ Mi~e� +Mi~ f � (the meaning of + is addition)
Mi~e*f� ≡ Mi~e� ×Mi~ f � (the meaning of * is multiplication)
Mi~e-f� ≡ Mi~e� −Mi~ f � (the meaning of - is subtraction)

Chapter Y.2. Assertion Y.2.3. Predicate

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -13-

Mi~e/f� ≡ Mi~e� ÷Mi~ f � (the meaning of / is division)
Mi~(e)� ≡ Mi~e� (the meaning of parentheses is its contents)
Mi~-e� ≡ 0.0 −Mi~e� (the meaning of unary minus is complement)

Example� �
<<PACE_ON_MaxCCI:x: --no intrinsic activity, pace at LRL
(vp or vs)@(x-max_cci)

and --and not since
not (exists t:BLESS_Types::Time
in x-max_cci,,x
--with a non-refractory ventricular sense or pace
that (vs or vp)@t) >>� �

Annex Y.2.3.4 Period-Shift

(1) Both timed predicate (Y.2.3.2) and timed expression (Y.2.4.1) require a period-shift when using ˆ to shift
its time frame by number of thread periods (a.k.a. clock cycles).

integer_expression ::=
[-]
(integer_assertion_value
| (integer_expression - integer_expression)
| (integer_expression / integer_expression)
| (integer_expression { + integer_expression }+)
| (integer_expression { * integer_expression }+))

Legality Rule

(L4) Every period shift must have integer type.

Semantics

(S5) Where e and f are integers,

Mi~(e+f)� ≡ Mi~e� +Mi~ f � (the meaning of + is addition)
Mi~(e*f)� ≡ Mi~e� ×Mi~ f � (the meaning of * is multiplication)
Mi~(e-f)� ≡ Mi~e� −Mi~ f � (the meaning of - is subtraction)
Mi~(e/f)� ≡ Mi~e� /Mi~ f � (the meaning of / is division, neglecting remainder)
Mi~-e� ≡ 0 −Mi~e� (the meaning of unary minus is complement)

Example

Examples of period shift from a pulse oximeter smart alarm:� �
<<GOOD: :goodCount=(numberof k:integer in lb..ub-1
that (SensorConnectedˆ(k-ub) and not MotionArtifactˆ(k-ub)))>>

<<CTR: :(all k:integer in lb..ub-1
are spo2_hist[k mod PulseOx_Properties::Max_Window_Samples] = C(k-(ub-1)))

and (totalSpO2=(sum k:integer in lb..ub-1 of C(k-(ub-1))))
and (goodCount=(numberof k:integer in lb..ub-1

Chapter Y.2. Assertion Y.2.3. Predicate

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -14-

that (SensorConnectedˆ(k-(ub-1)) and not MotionArtifactˆ(k-(ub-1)))))
and (all k:integer in lb..ub-1

are goodSamp[k mod PulseOx_Properties::Max_Window_Samples] iff
(SensorConnectedˆ(k-(ub-1)) and not MotionArtifactˆ(k-(ub-1))))>>;� �

Annex Y.2.3.5 Predicate Invocation

(1) Predicate invocation allows labeled Assertions to be used by other Assertions.

(2) Predicates of the form <<B:f:P>> may be invoked as B(a), where B is the label, f are formal param-
eters, P is a predicate, and a are actual parameters. Predicate invocations with single parameter may
omit the formal parameter identifier.

predicate_invocation ::= assertion_identifier
([assertion_expression | actual_assertion_parameter_list])

actual_assertion_parameter_list ::=
actual_assertion_parameter { , actual_assertion_parameter }*

actual_assertion_parameter ::=
formal_parameter_identifier : actual_parameter_assertion_expression

Semantics

(S6) Where B is a Assertion label, f1 f2 . . . fn are formal parameters, and P is a predicate that uses f1 f2 . . . fn,
and

�B : f1 f2 . . . fn : P� (there is Assertion B with predicate P & formal parameters f)

then the meaning of predicate invocation is

Mi~B(f1:a1, f2:a2, ... fn:an)� ≡ Mi~B |
f1
a1 |

f2
a2 · · · |

fn
an�

(the meaning of a predicate invocation is the meaning of the predicate of the Assertion with the same
label having actual parameters substituted for formal parameters)

Naming Rule

(N1) The identifier of a predicate invocation must be the label of a visible or imported Assertion.

Example

Examples of predicate invocation from a cardiac pacemaker:� �
<<VP(now) and URL(now)>>
<<ATR_DURATION(d:detect_time, dur_met:now)>>� �
Annex Y.2.3.6 Predicate Relations

(1) Predicate relations have conventional meanings. The in operators tests membership of a range.

Chapter Y.2. Assertion Y.2.3. Predicate

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -15-

predicate_relation ::=
assertion_subexpression relation_symbol assertion_subexpression

| assertion_subexpression in assertion_range
| shared_integer_name += assertion_subexpression

relation_symbol ::= = | < | > | <= | >= | != | <>

(2) The range is defined with ordinary subexpressions (??). Ranges may be open or closed on either or
both ends.
assertion_range ::=

assertion_subexpression range_symbol assertion_subexpression

range_symbol ::= .. | ,. | ., | ,,

Semantics

(S7) Where c, d, l, and u are predicate expressions,

Mi~c=d� ≡ Mi~c� = Mi~d� (the meaning of = is equality)
Mi~c<>d� ≡ Mi~c!=d� ≡ Mi~c� , Mi~d� (the meaning of <> and != is inequality)3

Mi~c<d� ≡ Mi~c� < Mi~d� (the meaning of < is less than)
Mi~c>d� ≡ Mi~c� > Mi~d� (the meaning of > is greater than)
Mi~c<=d� ≡ Mi~c� ≤ Mi~d� (the meaning of <= is at most)
Mi~c>=d� ≡ Mi~c� ≥ Mi~d� (the meaning of >= is at least)
Mi~c in l..u� ≡ Mi~c� ≥ Mi~l� ∧Mi~c� ≤ Mi~u� (the meaning of .. is closed interval)
Mi~c in l,.u� ≡ Mi~c� > Mi~l� ∧Mi~c� ≤ Mi~u� (the meaning of ,. is open-left interval)
Mi~c in l.,u� ≡ Mi~c� ≥ Mi~l� ∧Mi~c� < Mi~u� (the meaning of ., is open-right interval)
Mi~c in l,,u� ≡ Mi~c� > Mi~l� ∧Mi~c� > Mi~u� (the meaning of ,, is open interval)

(S8) Where v is an identifier of a shared integer variable, and e is an integer-valued expression,

Mi~v += e� ≡ Mend(i)~v� = Mstart(i)~v� +Mstart(i)~e� (the meaning of += is add to total 4)

Annex Y.2.3.7 Parenthesized Predicate

(1) Parentheses disambiguate precedence.

parenthesized_predicate ::= (predicate)

Semantics

(S9) Where P is a predicate,

3Reconciliation: inequality
4The definition of a single += is straight forward: at the end of the interval, the target will be the target value at the beginning of

the interval, plus an expression also valued at the beginning of the interval. Defining concurrent += to the same target, in the same
interval, is just like solitary +=, using the sum of all concurrent expressions. Concurrent += predicate defines concurrent fetch-add
action. Fetch-add is used to access shared data structures without locks, allowing unlimited speed-up. See U.S Pat. No. 5,867,649
DANCE-Multitude Concurrent Computation

Chapter Y.2. Assertion Y.2.3. Predicate

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -16-

Mi~(P)� ≡ Mi~P� (the meaning of parenthesis is its contents)

Annex Y.2.3.8 Universal Quantification

(1) Universal quantification claims its predicate is true for all the members of a particular set. Logic variables
must have types. Bounding the domain of quantification to a range, or when some predicate is true,
defines the set of values that variables may take.5 Quantified variables of type time are particularly
useful for declaratively expression cyber-physical systems (CPS). A particular combination of events
either did or did not occur in a particular interval of time, or what is true about system state during a
particular interval of time.

universal_quantification ::=
all logic_variables logic_variable_domain
are predicate

logic_variables ::= logic_variable_identifier { , logic_variable_identifier }* : type

logic_variable_domain ::= in
(assertion_expression range_symbol assertion_expression
| predicate)

Semantics

(S10) Where v is a logic variable, T is an Assertion-type, R is a range, and P(v) is a predicate that uses
v,

Mi~all v:T in R are P(v)� ≡ ∀ v ∈ Mi~R� ⊆ Mi~T� | Mi~P(v)�
(for all v in R, a subset of T, P(v) is true)

Example� �
<<MOTION_ARTIFACT_ALARM: :all j:integer

in 0..PulseOx_Properties::Motion_Artifact_Sample_Limit
are (MotionArtifactˆ(-j) or not SensorConnectedˆ(-j))>>� �

Annex Y.2.3.9 Existential Quantification

(1) Existential quantification claims its predicate is true for at least one member of a particular set.

existential_quantification ::=
exists logic_variables logic_variable_domain
that predicate

Semantics

(S11) Where v is a logic variable, T is as Assertion-type, R is a range, and P(v) is a predicate that uses
v,

5Bounding quantification is highly recommended.

Chapter Y.2. Assertion Y.2.3. Predicate

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -17-

Mi~exists v:T in R that P(v)� ≡ ∃ v ∈ Mi~R� ⊆ Mi~T� | Mi~P(v)�
(there exists v in R, a subset of T, for which P(v) is true)

Example� �
<<RAPID_DECLINE_ALARM: :AdultRapidDeclineAlarmEnabled and

(exists j:integer in 1..NUM_WINDOW_SAMPLES()
that (SpO2 <= (SpO2ˆ(-j) - MaxSpO2Decline)))>>� �

Annex Y.2.3.10 Event

(1) An event occurs when either a port or variable has a (non-null) value, or the state machine is in a
particular state (see ?? Clock).

event ::= < port_variable_or_state_identifier >
event_expression ::= [not] event

| event_subexpression (and event_subexpression)+
| event_subexpression (or event_subexpression)+
| event - event

event_subexpression ::= [always | never] (event_expression) | event

Semantics

(S12) Where p is a port identifier <p> ≡ p̂ ≡ Mnow~p , ⊥�.
Where v is a variable identifier <v> ≡ v̂ ≡ Mnow~v , ⊥�.
Where s is a state identifier <s> ≡ ŝ ≡ Mnow~S tate(s)� where S tate(s) means the state machine is
currently in state s.

(S13) Where <x> and <y> are events, <x> - <y> ≡ x̂ −̂ ŷ.

(S14) Where ee is an event expression, never(ee)≡ee= 0̂, and always(ee)≡ee= ˆ1S VP.

(S15) Logical operators not, and, or are complement, conjunction, and disjunction, respectively. Parenthe-
ses group.

Annex Y.2.4 Assertion-Expression

(1) Other useful quantifiers add, multiply, or count the elements of sets. There is no operator precedence
so parentheses must be used to avoid ambiguity. Numeric operators have their usual meanings.

(2) Assertion-expressions differ from expression usually found in programming languages which are in-
tended to be evaluated during execution. Rather, assertion expressions define values derived from
over values, usually numeric. Such predicate expressions usually appear within predicates that contain
relations between values. Predicate expressions may also used within Assertion-functions (Y.2.2.3) to
define Assertions that return values.

Chapter Y.2. Assertion Y.2.4. Assertion-Expression

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -18-

(3) Numeric quantifiers sum, product, and number-of have an optional logic variable domain, but include
one whenever possible. Bounding quantification prevents oddities that can occur with infinite domains.
In mathematics, sums of an infinite number of ever smaller terms are quite common. But for reasoning
about program behavior, stick to bounded quantifications.

assertion_expression ::=
sum logic_variables [logic_variable_domain]

of assertion_expression
| product logic_variables [logic_variable_domain]

of assertion_expression
| numberof logic_variables [logic_variable_domain]

that subpredicate
| assertion_subexpression

[{ + assertion_subexpression }+
| { * assertion_subexpression }+
| - assertion_subexpression
| / assertion_subexpression
| ** assertion_subexpression
| mod assertion_subexpression
| rem assertion_subexpression]

Semantics

(S1) Where v is a logic variable, T is a type, R is a range, P(v) is a predicate that uses v, E(v) is a predicate
expression that uses v, and e, f are predicate subexpressions,

Mi~sum v:T in R of E(v)� ≡
∑

v∈RMi~E(v)�
(sum the value E(v) for each v in the range R)
Mi~product v:T in R of E(v)� ≡

∏
v∈RMi~E(v)�

(multiply the value E(v) for each v in the range R)
Mi~numberof v:T in R that P(v)� ≡ ‖{v ∈ Mi~R� |Mi~P(v)�}‖
(cardinality of the set of v in R for which P(v) is true)
Mi~e+f� ≡ Mi~e� +Mi~ f � (the meaning of + is addition)
Mi~e*f� ≡ Mi~e� ×Mi~ f � (the meaning of * is multiplication)
Mi~e-f� ≡ Mi~e� −Mi~ f � (the meaning of - is subtraction)
Mi~e/f� ≡ Mi~e� ÷Mi~ f � (the meaning of / is division)
Mi~e**f� ≡ Mi~e�Mi~ f � (the meaning of ** is exponentiation)
Mi~e mod f� ≡ Mi~e� mod Mi~ f � (the meaning of mod is modulus)
Mi~e rem f� ≡ Mi~e� remMi~ f � (the meaning of rem is remainder)

Legality Rule

(L1) The ranges for sum, product, and numberof predicate expressions must be discrete and finite.

(4) Predicate subexpressions allow optional negation of a timed expression. Negation has the usual mean-
ing.

assertion_subexpression ::=
[- | abs] timed_expression
| assertion_type_conversion

Chapter Y.2. Assertion Y.2.4. Assertion-Expression

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -19-

assertion_type_conversion ::=
(natural | integer | rational | real | complex | time)
parenthesized_assertion_expression

Semantics

(S2) Where S is a predicate expression,

Mi~-S� ≡ 0 −Mi~S � (the meaning of - is negation)
Mi~abs S� ≡ Mi~(if S>=0 then S else -S)� (the meaning of abs is absolute value)6

Example� �
<<SPO2_AVERAGE: :=

--the sum of good SpO2 measurements
(sum i:integer in -SpO2MovingAvgWindowSamples..-1 of

(SensorConnectedˆ(i) and not MotionArtifactˆ(i)??SpO2ˆ(i):0))
/ --divided by the number of good SpO2 measurements
(numberof i:integer in -SpO2MovingAvgWindowSamples..-1
that (SensorConnectedˆ(i) and not MotionArtifactˆ(i)))>>� �

Annex Y.2.4.1 Timed Expression

(1) In a timed expression, the time when the expression is evaluated may be specified. The ’ means
the value of the expression one clock cycle (or thread period) hence; the @ means the value of the
expression when the subexpression (to the right of the @), in seconds, is the current time; and the ˆ
means the value of the expression an integer number of clock ticks from now. Grammatically, time-
expression and period-shift are time-free (no ’ @ or ˆ within).

timed_expression ::=
(assertion_value

| parenthesized_assertion_expression
| predicate_incocation)

[’
| ˆ integer_expression
| @ time_expression]

Legality Rules

(L2) When using @, the subexpression must have a time type such as, Timing_Properties::Time.

(L3) When using ˆ, the value must have integer type.

Semantics

(S3) Where E is a value, a parenthesized predicate expression, or a conditional predicate expression, t is a
time, d is the duration of a thread’s period, and k is an integer:

6Reconciliation: absolute value

Chapter Y.2. Assertion Y.2.4. Assertion-Expression

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -20-

M~E@t� ≡ Mt~E� (the meaning of E@t is the meaning of E at time t)
Mt~Eˆk� ≡ Mt+dk~E� (the meaning of Eˆk at time t, is the meaning of E, k period durations hence, or
earlier if k < 0)
Mt~E’� ≡ Mt~Eˆ1� ≡ Mt+d~E� (the meaning of E’ at time t, is the meaning of E a period duration
hence)

Example� �
<<heart_rate[i]=(MotionArtifactˆ(1-i) or not SensorConnectedˆ(1-i)

??0:HeartRateˆ(1-i))>>� �
Annex Y.2.4.2 Parenthesized Assertion Expression

(1) Parentheses around assertion expressions determine operator precedence. Both conditional assertion
expressions and record term have inherent parentheses.

parenthesized_assertion_expression ::=
(assertion_expression)
| conditional_assertion_expression
| record_term

Annex Y.2.4.3 Assertion-Value

(1) An Assertion-value is atomic, so cannot be further subdivided into simpler expressions. The value
of tops is the time of previous suspension of the thread which contains it; tops is used commonly in
expressions of timeouts. The value of Assertion function invocation is given in Y.2.3.5. Property values
according to AS5506B §11 Properties. Port values according to AS5506B §8.3 Ports.

assertion_value ::=
now | tops | timeout
| value_constant
| variable_name
| assertion_function_invocation
| port_value

Annex Y.2.4.4 Conditional Assertion Expression

(1) A conditional assertion expression determines the value of a predicate expression by evaluating a
boolean expression or relation, then choosing between alternative expressions, having the first value if
true or the second value if false.
conditional_assertion_expression ::=
(predicate ?? assertion_expression : assertion_expression)

Semantics

Chapter Y.2. Assertion Y.2.4. Assertion-Expression

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -21-

(S4) Where t and f are expressions and B is a boolean-valued expression or relation:

Mi~(B??t:f)� ≡
Mi~B�→ Mi~t�
¬Mi~B�→ Mi~f�

(choose first value if true; second value if false)

Example� �
<<(all i:integer in 1 ..num_samples
are spo2[i]’=(if MotionArtifactˆ(1-i) or not SensorConnectedˆ(1-i)

then 0 else SpO2ˆ(1-i)))
and (num_samples’=PulseOx_Properties::Num_Trending_Samples)>>� �

Annex Y.2.4.5 Conditional Assertion Function

(1) A conditional assertion function is much like a conditional assertion expression (Y.2.4.4), but allows an
arbitrary number of choices, each of which is controlled by a predicate. A conditional assertion function
is only permitted as a Assertion-function value (Y.2.2.3).

(2) Conditional Assertion-function was added to specify the flow rate of a patient-controlled analgesia (PCA)
pump. Rather than a smooth function, the flow rate must be different depending on system state (see
example). PUMP RATE is the BLESS::Assertion property of a port of the thread deciding infusion rate.
Each of the parenthesized predicates embodies complex conditions that must be true for each of the
possible infusion rates. When a value is output from the port, a proof obligation is generated to ensure
that the corresponding property holds.

conditional_assertion_function ::=
condition_value_pair { , condition_value_pair }*

condition_value_pair ::=
parenthesized_predicate -> assertion_expression

Semantics

(S5) Where C1, C2, and C2 are predicates and E1, E2, and E3 are Assertion-expressions:

Mi~(C1) ->E1, (C2) ->E2, (C3) ->E3� ≡
Mi~C1�→ Mi~E1�
Mi~C2�→ Mi~E2�
Mi~C3�→ Mi~E3�

(choose the value corresponding to the true condition)

Example

Conditional Assertion-functions should be used sparingly. The pump-rate example below induced con-
ditional Assertion-function’s creation to define infusion rate in different conditions.� �
<<PUMP_RATE: :=
(HALT()) -> 0, --no flow
(KVO_RATE()) -> PCA_Properties::KVO_Rate, --KVO rate

Chapter Y.2. Assertion Y.2.4. Assertion-Expression

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -22-

(PB_RATE()) -> PCA_Properties::Patient_Button_Rate, --maximum infusion
(CCB_RATE()) -> Square_Bolus_Rate, --square bolus rate
(PRIME_RATE()) -> PCA_Properties::Prime_Rate, --pump priming
(BASAL_RATE()) -> Basal_Rate --basal rate, from data port

>>� �
Annex Y.2.4.6 Assertion-Function Invocation

Assertion-functions which are declared in the form <<C:f:=E>> and may be invoked like functions as a
predicate value C(a), where

• C is the label,

• f are formal parameters,

• E is an Assertion-expression, and

• a are actual parameters.

assertion_function_invocation ::=
assertion_function_identifier
([assertion_expression |

actual_assertion_parameter { , actual_assertion_parameter }*])
actual_assertion_parameter ::=

formal_identifier : actual_assertion_expression

Semantics

(S6) Where C is an Assertion-function label, f1 f2 . . . fn are formal parameters, and E is a predicate expression
that uses f1 f2 . . . fn, and

�C : f1 f2 . . . fn := E�
(there is Assertion-function C with predicate expression E and formal parameters f)

(S7) The meaning of Assertion-function invocation is

Mi~C(a1 a2 ... an)� ≡ Mi~E |
f1
a1 |

f2
a2 · · · |

fn
an�

(the meaning of an assertion function invocation is the meaning of the expression of the Assertion-
function with the same label having actual parameters substituted for formal parameters)

Example� �
<<SUPPL_O2_ALARM: :SupplOxyAlarmEnabledˆ0 and
(SPO2_AVERAGE())ˆ0 < (SpO2LowerLimitˆ0+SpO2LevelAdjˆ0)>>� �

Annex Y.2.4.7 Assertion-Enumeration Invocation

Assertion-enumerations which are declared in the form <<C:x+=>R>> and may be invoked like functions
as a predicate value C(a), where

Chapter Y.2. Assertion Y.2.4. Assertion-Expression

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -23-

• C is the label of the Assertion-enumeration,

• a is an enumeration-element identifier, and

• R is a set of enumeration pairs (label->predicate).

assertion_enumeration_invocation ::=
+=> assertion_enumeration_label_identifier
(actual_assertion_parameter)

Semantics

(S8) Where

C is an Assertion-enumeration label,

L is a set of enumeration labels {l1, l2, . . . , ln},

a is the formal parameter, an enumeration label a ∈ L,

P is a set of predicates {p1, p2, . . . , pn}, and

R is a set of enumeration pairs, {l1 → p1, l2 → p2, . . . , ln → pn} defining the onto relation7 between
enumeration labels and their meaning, R(j) = q ≡ j→ q ∈ R

and

<<C:x+=>R>> (there is Assertion-enumeration C with enumeration pairs R and ignored parameter
x)

(S9) The meaning of Assertion-enumeration invocation is

Mi~C(a)� ≡ Mi~R(a)�
(the meaning of an Assertion-enumeration invocation is the predicate paired with given label a)

Example

(1) Enumeration types should be used sparingly. Assertion-enumerations were created to express the
meaning of event-data with enumeration type. Ports having enumeration types may only have enumera-
tion literals for out parameters. The following example expressed the meaning of ‘On’ and ‘Off’ in section
A.5.1.3 of the isolette example in FAA’s Requirement Engineering Management Handbook:� �
--A.5.1.3 Manage Heat Source Function
<<HEAT_CONTROL:x+=>
On -> REQMHS2() or --below desired range

(REQMHS4() and (heat_controlˆ-1=On)),
Off -> REQMHS1() or --initialization

REQMHS3() or --above desired range
REQMHS5() or --failed
(REQMHS4() and (heat_controlˆ-1=Off)) >>� �

Used to define the meaning of the value of port heat_control:

7Every label has exactly one predicate defining its meaning.

Chapter Y.2. Assertion Y.2.4. Assertion-Expression

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -24-

� �
heat_control : out data port Iso_Variables::on_off

{BLESS::Assertion => "<<+=>HEAT_CONTROL(x)>>";};� �
When an enumeration value is sent out port in state-machine action:� �

mhsBelow: --REQ-MHS-2 temp below desired range
check_temp -[current_temperature? <= lower_desired_temperature?]-> run
{ <<REQMHS2() and not REQMHS1()>>
heat_control!(On) --temp below desired range
; <<heat_control=On>>
heat_previous_period’ := On
<<heat_previous_period’ = heat_control>>

}; --end of mhsBelow� �
During transformation from proof outline to complete proof, port output of ‘On’ and its precondition� �
<<REQMHS2() and not REQMHS1()>>

heat_control!(On) --temp below desired range� �
becomes a verification condition, that what’s claimed for ‘On’ holds� �
<<REQMHS2() and not REQMHS1()>>

->
<<REQMHS2() or (REQMHS4() and (heat_controlˆ-1=On))>>� �

(2) If it’s just two labels (off/on) use a simple predicate instead. Save the hassle of putting meaning to
enumeration labels for when it’s unavoidable:� �
--regulator mode Figure A-4. Regulate Temperature Mode Transition Diagram
<<REGULATOR_MODE:x+=>
Init -> INI(),
NORMAL -> REGULATOR_OK() and RUN(),
FAILED -> not REGULATOR_OK() and RUN() >>� �

Chapter Y.2. Assertion Y.2.4. Assertion-Expression

Chapter Y.3
Names and Values

Annex Y.3.1 Value Constant

(1) Value constants are Boolean, numeric or string literals, property constants or property values.1

value_constant ::=
true | false | numeric_literal | string_literal
| property_constant | property_reference

(2) Literals follow AS5506B §15 Lexical Elements.

Semantics

Mi~true� ≡ > (the meaning of true is customary)
Mi~false� ≡ ⊥ (the meaning of false is customary)

Annex Y.3.1.1 Property Constant

(1) Property constants are values that are defined in AADL property sets.2

property_constant ::=
property_set_identifier :: property_constant_identifier

Semantics

(S1) The meaning of property constants are defined by the AADL standard, AS5506B §11.1.3 Property
Constants.

1BA D.7(4)
2AS5506B §11.1.3 Property Constants

25

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -26-

Annex Y.3.1.2 Property Reference

(1) Property values may be defined in property sets, or attached to a component or feature.3

property_reference ::=
(# [property_set_identifier ::]
| component_element_reference #
| unique_component_classifier_reference #
| self)
property_name

(2) The property may be relative to the component containing the behavior annex subclause: a subcompo-
nent, a bound prototype, a feature, or the component itself.

component_element_reference ::=
subcomponent_identifier | bound_prototype_identifier
| feature_identifier | self

(3) Because AADL property values may be arrays or records, a property name may include array indices
or record field identifiers.

(4) When the property is a range, the upper bound or lower bound of the property value can be referenced
using upper_bound and lower_bound keywords.4

(5) When a property is a record, the field of a property value can be referenced using a dot separator
between the property identifier and the field identifier.5

(6) When a property is an array, elements of the property value can be referenced using an integer value
between brackets.6

property_name ::= property_identifier { property_field }*
property_field ::= [integer_value] | . field_identifier
| . upper_bound | . lower_bound

(7) Property values may be from any component specified by its package name, type identifier, and option-
ally implementation identifier.

unique_component_classifier_reference ::=
{ package_identifier :: }* component_type_identifier
[. component_implementation_identifier]

Annex Y.3.2 Assertion Name

(1) An assertion name is a sequence of identifiers, with optional array indices, separated by periods. Section
§??, Types, defines the relationship between names and elements of values having constructed types:

3Assertion Differs from BA: no local variable properties
4BA D.7(9)
5BA D.7(10)
6BA D.7(11)

Chapter Y.3. Names and Values Y.3.2. Assertion Name

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -27-

arrays, records, and variants. A slice, or portion of an array, may be named by an integer-valued range
as its array index.

assertion_name ::= root_identifier { [index_expression_or_range] }*
{ . field_identifier { [index_expression_or_range] }* }*

(2) An array index must be an integer expression, or a slice defined as an integer-valued range: lower
bound .. upper bound.

index_expression_or_range ::=
integer_expression [.. integer_expression]

Legality Rules

(L1) Array indices must be non-negative.

(L2) An array index or slice must be in the array’s range. Names with array indexes outside of the array’s
range have undefined value and have undefined type.

(L3) A slice’s lower bound must be at most its upper bound.

Semantics

(S1) Where x is a variable name,7 y is a value, s is a state, and the pair (x, y) ∈ s:

Ms~x� ≡ y (the meaning of a variable name in a state is its value)

Where a is an array name, i is an integer value or values for a multidimensional array, y is a value, s is
a state, and the pair (a[i], y) ∈ s:

Ms~a[i]� ≡ y (the meaning of an array in a state is the value associated with its index)

Where r is an record name, l is a label, y is a value, s is a state, and the pair (r.l, y) ∈ s:

Ms~r.l� ≡ y (the meaning of a record in a state is its value of its selected label)

Where v is a variant name with discriminator d, l is a label, y is a value, s is a state, and the pairs
(v.d, l), (v.l, y) ∈ s:

Ms~v.l� ≡ y (the meaning of a variant is the value of the element having the label of the discrimina-
tor)

Annex Y.3.3 Port Value

(1) The core language defines that data from data ports is made available to the application source code
through a port variable having the name of the port. If no new value is available since the previous
freeze, the previous value remains available and the variable is marked as not fresh. Freshness can be
tested in the application source code via service calls [AS5506B §8.3.5].8

port_value ::= in_port_name (? | ’count | ’fresh | ’updated)

7A name may be a simple identifier, or a compound name using indexes and/or labels. Here that name must correspond to a variable.
In the following the name must correspond to an array, record or variant.

8Assertion Differs from BA: port names must have suffix: ? or ’

Chapter Y.3. Names and Values Y.3.3. Port Value

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -28-

port_name ::=
{ subcomponent_identifier . }* port_identifier
[[natural_literal]]

Chapter Y.3. Names and Values Y.3.3. Port Value

Chapter Y.4
Lexicon

(1) Numeric literals, whitespace, identifiers and comments follow AS5506B §15 Lexical Elements.1 String
literals are enclosed in ‘ ’ like LaTeX.

Annex Y.4.1 Character Set

(1) The only characters allowed outside of comments are the graphic characters and format effectors.

character ::= graphic_character | format_effector
| other_control_character

graphic_character ::= identifier_letter | digit | space_character
| special_character

(2) The character repertoire for the text of BLESS annex libraries, subclauses, and properties consists
of the collection of characters called the Basic Multilingual Plane (BMP) of the ISO 10646 Universal
Multiple-Octet Coded Character Set, plus a set of format effectors and, in comments only, a set of
other control functions; the coded representation for these characters is implementation defined (it need
not be a representation defined within ISO-10646-1).

(3) The description of the language definition of BLESS uses the graphic symbols defined for Row00: Basic
Latin and Row 00: Latin-1 Supplement of the ISO 10646 BMP; these correspond to the graphic symbols
of ISO 8859-1 (Latin-1); no graphic symbols are used in this standard for characters outside of Row 00
of the BMP. The actual set of graphic symbols used by an implementation for the visual representation
of the text of BLESS is not specified.

(4) The categories of characters are defined as follows:

identifier_letter
upper_case_identifier_letter | lower_case_identifier_letter

1BA D.7(6)

29

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -30-

upper_case_identifier_letter
Any character of Row 00 of ISO 10646 BMP whose name begins

Latin Capital Letter.

lower_case_identifier_letter
Any character of Row 00 of ISO 10646 BMP whose name begins
Latin Small Letter.

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

space_character
The character of ISO 10646 BMP named Space.

special_character
Any character of the ISO 10646 BMP that is not reserved for a control
function, and is not the space_character, an identifier_letter,
or a digit.

format_effector
The control functions of ISO 6429 called character tabulation (HT),
line tabulation (VT), carriage return (CR), line feed (LF), and
form feed (FF).

other_control_character
Any control character, other than a format_effector, that is allowed
in a comment; the set of other_control_functions allowed in comments
is implementation defined.

(5) Table Y.4.1 defines names of certain special characters.

Table Y.4.1: Special Character Names
Symbol Name Symbol Name

" quotation mark # number sign
= equals sign underline
+ plus sign , comma
- minus . dot
: colon ; semicolon
(left parenthesis) right parenthesis
[left square bracket] right square bracket
{ left curly bracket } right curly bracket
& ampersand ˆ caret

Annex Y.4.2 Lexical Elements, Separators, and Delimiters

(1) The text of BLESS annex libraries, subclauses, and properties consist of a sequence of separate
lexical elements. Each lexical element is formed from a sequence of characters, and is either a delim-
iter, an identifier, a reserved word, a numeric literal, a character literal, a string literal, or a comment.

Chapter Y.4. Lexicon Y.4.2. Lexical Elements, Separators, and Delimiters

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -31-

The meaning of BLESS annex libraries, subclauses, and properties depends only on the particular
sequences of lexical elements that form its compilations, excluding comments.

(2) The text of BLESS annex libraries, subclauses, and properties are divided into lines. In general, the
representation for an end of line is implementation defined. However, a sequence of one or more
format effectors other than character tabulation (HT) signifies at least one end of line.

(3) In some cases an explicit separator is required to separate adjacent lexical elements. A separator is
any of a space character, a format effector, or the end of a line, as follows:

• A space character is a separator except within a comment, or a string literal.

• Character tabulation (HT) is a separator except within a comment.

• The end of a line is always a separator.

(4) A delimiter is either one of the following special characters

() [] { } , . : ; = * + -

or one of the following compound delimiters each composed of two or three adjacent special charac-
ters

:= <> != :: => -> .. -[]->)˜>

(5) The following names are used when referring to compound delimiters:

Delimiter Name
:= assign
<> != unequal

:: qualified name separator
=> association
-> implication
-[left step bracket

]-> right step bracket
)˜> right conditional bracket

Annex Y.4.3 Identifiers

(1) Identifiers are used as names. Identifiers are case sensitive.2

identifier ::= identifier_letter {[] letter_or_digit}*
letter_or_digit ::= identifier_letter | digit

• An identifier shall not be a reserved word in either BLESS or AADL.

• Identifiers do not contain spaces, or other whitespace characters.

2Identifiers in AADL are case insensitive.

Chapter Y.4. Lexicon Y.4.3. Identifiers

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -32-

Annex Y.4.4 Numeric Literals

(1) There are four kinds of numeric literal: integer, real, complex, and rational. A real literal is a numeric
literal that includes a point, and possibly an exponent; an integer literal is a numeric literal without a
point; a complex literal is a pair of real literals separated by a colon; a rational literal is a pair of integer
literals separated by a bar.

(2) Peculiarly, negative numbers cannot be represented as numeric literals. Instead unary minus preceding
a numeric literal represents negative literals instead.

numeric_literal ::=
integer_literal | real_literal | rational_literal | complex_literal

(3) Integer values are equivalent to Base_Types::Integer values as defined in the AADL Data Modeling
Annex B.3

integer_literal ::= decimal_integer_literal | based_integer_literal

real_literal ::= decimal_real_literal

Annex Y.4.4.1 Decimal Literals

(1) A decimal literal is a numeric literal in the conventional decimal notation (that is, the base is ten).

decimal_integer_literal ::= numeral

decimal_real_literal ::= numeral . numeral [exponent]

numeral ::= digit {[] digit}*
exponent ::= (E|e) [+] numeral | (E|e) - numeral

(2) An underline character in a numeral does not affect its meaning. The letter E of an exponent can be
written either in lower case or in upper case, with the same meaning.

(3) An exponent indicates the power of ten by which the value of the decimal literal without the exponent is
to be multiplied to obtain the value of the decimal literal with the exponent.

Annex Y.4.4.2 Based Literals

(1) A based literal is a numeric literal expressed in a form that specifies the base explicitly.

based_integer_literal ::= base # based_numeral # [positive_exponent]

base ::= digit [digit]

based_numeral ::= extended_digit [] extended_digit

extended_digit ::= digit | A | B | C | D | E | F | a | b | c | d | e | f

3BA D.7(7)

Chapter Y.4. Lexicon Y.4.4. Numeric Literals

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -33-

(2) The base (the numeric value of the decimal numeral preceding the first #) shall be at least two and at
most sixteen. The extended digits A through F represent the digits ten through fifteen respectively. The
value of each extended digit of a based literal shall be less than the base.

(3) The conventional meaning of based notation is assumed. An exponent indicates the power of the
base by which the value of the based literal without the exponent is to be multiplied to obtain the value
of the based literal with the exponent. The base and the exponent, if any, are in decimal notation.
The extended digits A through F can be written either in lower case or in upper case, with the same
meaning.

Annex Y.4.4.3 Rational Literals

A rational literal is the ratio of two integers.

rational_literal ::=
[[-] dividend_integer_literal | [-] divisor_integer_literal]

Annex Y.4.4.4 Complex Literals

A complex literal is a pair of real numbers for the real part and imaginary part.

complex_literal ::=
[[-] real_literal : [-] imaginary_part_real_literal]

Annex Y.4.5 String Literals

(1) A string literal is formed by a sequence of graphic characters (possibly none) enclosed between two
string brackets: ‘ and ’.4

string_literal ::= "{string_element}*"

string_element ::= "" | non_string_bracket_graphic_character

(2) The sequence of characters of a string literal is formed from the sequence of string elements between
the string bracket characters, in the given order, with a string element that is "" becoming " in the
sequence of characters, and any other string element being reproduced in the sequence.

(3) A null string literal is a string literal with no string elements between the string bracket characters.

Annex Y.4.6 Comments

(1) A comment starts with two adjacent hyphens and extends up to the end of the line. A comment may
appear on any line of a program.

4BLESS string literals are different from AADL string literals which use ” as string bracket characters.

Chapter Y.4. Lexicon Y.4.5. String Literals

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -34-

comment ::= --{non_end_of_line_character}*
(2) The presence or absence of comments has no influence on whether a program is legal or illegal. Fur-

thermore, comments do not influence the meaning of a program; their sole purpose is the enlightenment
of the human reader.

Chapter Y.4. Lexicon Y.4.6. Comments

Chapter Y.5
Alphabetized Grammar

actual_assertion_parameter ::=
formal_identifier : actual_assertion_expression §Y.2.4.6 p22

actual_assertion_parameter_list ::=
actual_assertion_parameter { , actual_assertion_parameter }* §Y.2.3.5 p14

assertion ::=
<< (assertion_predicate
| assertion_function
| assertion_enumeration
| assertion_enumeration_invocation) >> §Y.2.2 p7

assertion_annex_library ::=
annex Assertion {** { assertion }+ **} ; §Y.2.1 p6

assertion_enumeration ::=
assertion_enumeration_label_identifier : parameter_identifier
+=> enumeration_pair { , enumeration_pair }* §Y.2.2.4 p9

assertion_enumeration_invocation ::=
+=> asserion_enumeration_label_identifier
(actual_assertion_parameter) §Y.2.4.7 p23

35

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -36-

assertion_expression ::=
assertion_subexpression

[{ + assertion_subexpression }+
| { * assertion_subexpression }+
| - assertion_subexpression
| / assertion_subexpression
| ** assertion_subexpression
| mod assertion_subexpression
| rem assertion_subexpression]

| sum logic_variables [logic_variable_domain]
of assertion_expression

| product logic_variables [logic_variable_domain]
of assertion_expression

| numberof logic_variables [logic_variable_domain]
that subpredicate §Y.2.4 p18

assertion_function ::=
[label_identifier : [formal_assertion_parameter_list]]
:= (assertion_expression | conditional_assertion_function) §Y.2.2.3 p9

assertion_function_invocation ::=
assertion_function_identifier ([assertion_expression |
actual_assertion_parameter { , actual_assertion_parameter }*]) §Y.2.4.6 p22

assertion_predicate ::=
[label_identifier : [formal_assertion_parameter_list] :]
predicate §Y.2.2.2 p8

assertion_range ::=
assertion_subexpression range_symbol assertion_subexpression §Y.2.3.6 p15

assertion_subexpression ::=
[- | abs] timed_expression
| assertion_type_conversion §Y.2.4 p18

assertion_type_conversion ::=
(natural | integer | rational | real | complex | time)
parenthesized_assertion_expression §Y.2.4 p19

assertion_value ::=
now | tops | timeout
| value_constant
| variable_name
| assertion_function_invocation
| port_value §Y.2.4.3 p20

component_element_reference ::=
subcomponent_identifier | bound_prototype_identifier
| feature_identifier | self §Y.3.1.2 p26

conditional_assertion_expression ::=
(predicate ?? assertion_expression : assertion_expression) §Y.2.4.4 p20

Chapter Y.5. Alphabetized Grammar

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -37-

conditional_assertion_function ::=
condition_value_pair { , condition_value_pair }* §Y.2.4.5 p21

condition_value_pair ::=
parenthesized_predicate -> assertion_expression §Y.2.4.5 p21

enumeration_pair ::= enumeration_literal_identifier -> predicate §Y.2.2.4 p9

event ::= < port_variable_or_state_identifier > §Y.2.3.10 p17

event_expression ::=
[not] event
| event_subexpression (and event_subexpression)+
| event_subexpression (or event_subexpression)+
| event - event §Y.2.3.10 p17

event_subexpression ::=
[always | never] (event_expression) | event §Y.2.3.10 p17

existential_quantification ::=
exists logic_variables logic_variable_domain
that predicate §Y.2.3.9 p16

formal_assertion_parameter ::= parameter_identifier [˜ type_name] §Y.2.2.1 p7

formal_assertion_parameter_list ::=
formal_assertion_parameter { , formal_assertion_parameter }* §Y.2.2.1 p7

index_expression_or_range ::=
integer_expression [.. integer_expression] §Y.3.2 p27

integer_expression ::=
[-]
(integer_assertion_value
| (integer_expression - integer_expression)
| (integer_expression / integer_expression)
| (integer_expression { + integer_expression }+)
| (integer_expression { * integer_expression }+)) §Y.2.3.4 p13

logic_variable_domain ::=
in (assertion_expression range_symbol assertion_expression

| predicate) §Y.2.3.8 p16

logic_variables ::=
logic_variable_identifier { , logic_variable_identifier }*
: type §Y.2.3.8 p16

name ::=
root_identifier { [index_expression_or_range] }*

{ . field_identifier { [index_expression_or_range] }* }* §?? p??

parenthesized_assertion_expression ::=
(assertion_expression)
| conditional_assertion_expression
| record_term §Y.2.4.2 p20

Chapter Y.5. Alphabetized Grammar

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -38-

parenthesized_predicate ::= (predicate) §Y.2.3.7 p15

port_name ::=
{ subcomponent_identifier . }* port_identifier
[[natural_literal]] §Y.3.3 p28

port_value ::=
in_port_name (? | ’count | ’fresh | ’updated) §Y.3.3 p27

predicate ::=
universal_quantification
| existential_quantification
| subpredicate

[{ and subpredicate }+
| { or subpredicate }+
| { xor subpredicate }+
| implies subpredicate
| iff subpredicate
| -> subpredicate] §Y.2.3 p10

predicate_invocation ::=
assertion_identifier
([assertion_expression | actual_assertion_parameter_list]) §Y.2.3.5 p14

predicate_relation ::=
assertion_subexpression relation_symbol assertion_subexpression
| assertion_subexpression in assertion_range
| shared_integer_name += assertion_subexpression §Y.2.3.6 p15

property_constant ::=
property_set_identifier :: property_constant_identifier §Y.3.1.1 p25

property_field ::=
[integer_value]
| . field_identifier
| . upper_bound
| . lower_bound §Y.3.1.2 p26

property_name ::= property_identifier { property_field }* §Y.3.1.2 p26

property_reference ::=
(# [property_set_identifier ::]
| component_element_reference #
| unique_component_classifier_reference #
| self #)
property_name §Y.3.1.2 p26

range_symbol ::= .. | ,. | ., | ,, §Y.2.3.6 p15

relation_symbol ::= = | < | > | <= | >= | != | <> §Y.2.3.6 p15

Chapter Y.5. Alphabetized Grammar

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -39-

subpredicate ::=
[not]
(true | false | stop
| predicate_relation
| timed_predicate
| event_expression
| def logic_variable_identifier) §Y.2.3.1 p11

time_expression ::=
time_subexpression
| time_subexpression - time_subexpression
| time_subexpression / time_subexpression
| time_subexpression { + time_subexpression }+
| time_subexpression { * time_subexpression }+ §Y.2.3.3 p12

time_subexpression ::= [-]
(time_assertion_value
| (time_expression)
| assertion_function_invocation) §Y.2.3.3 p12

timed_expression ::=
(assertion_value

| parenthesized_assertion_expression
| predicate_invocation)

[’ | ˆ integer_expression | @ time_expression] §Y.2.4.1 p19

timed_predicate ::=
(name | parenthesized_predicate | predicate_invocation)
[’ | @ time_expression | ˆ integer_expression] §Y.2.3.2 p11

type_name ::=
{ package_identifier :: }* data_component_identifier

[. implementation_identifier]
| natural | integer | rational | real
| complex | time | string §Y.2.2.1 p8

unique_component_classifier_reference ::=
{ package_identifier :: }* component_type_identifier
[. component_implementation_identifier] §Y.3.1.2 p26

universal_quantification ::=
all logic_variables logic_variable_domain
are predicate §Y.2.3.8 p16

value_constant ::=
true | false | numeric_literal | string_literal
| property_constant | property_reference §Y.3.1 p25

Alphabetized Lexicon

base ::= digit [digit] §Y.4.4.2 p32

based_integer_literal ::= base # based_numeral # [positive_exponent] §Y.4.4.2 p32

Chapter Y.5. Alphabetized Grammar

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -40-

based_numeral ::= extended_digit [] extended_digit §Y.4.4.2 p32

character ::= graphic_character | format_effector
| other_control_character §Y.4.1 p29

comment ::= --{non_end_of_line_character}* §Y.4.6 p33

complex_literal ::=
[[-] real_literal : [-] imaginary_part_real_literal] §Y.4.4.4 p33

decimal_integer_literal ::= numeral §Y.4.4.1 p32

decimal_real_literal ::= numeral . numeral [exponent] §Y.4.4.1 p32

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 §Y.4.1 p30

exponent ::= (E|e) [+] numeral | (E|e) - numeral §Y.4.4.1 p32

extended_digit ::= digit | A | B | C | D | E | F | a | b | c | d | e | f §Y.4.4.2 p32

format_effector
The control functions of ISO 6429 called character tabulation (HT),
line tabulation (VT), carriage return (CR), line feed (LF), and
form feed (FF). §Y.4.1 p30

graphic_character ::= identifier_letter | digit | space_character
| special_character §Y.4.1 p29

identifier ::= identifier_letter {[] letter_or_digit}* §Y.4.3 p31

identifier_letter
upper_case_identifier_letter | lower_case_identifier_letter §Y.4.1 p29

integer_literal ::= decimal_integer_literal | based_integer_literal §Y.4.4 p32

letter_or_digit ::= identifier_letter | digit §Y.4.3 p31

lower_case_identifier_letter
Any character of Row 00 of ISO 10646 BMP whose name begins
Latin Small Letter. §Y.4.1 p30

numeral ::= digit {[] digit}* §?? p??

numeric_literal ::=
integer_literal | real_literal | rational_literal | complex_literal §Y.4.4 p32

other_control_character
Any control character, other than a format_effector, that is allowed
in a comment; the set of other_control_functions allowed in comments
is implementation defined. §Y.4.1 p30

rational_literal ::=
[[-] dividend_integer_literal | [-] divisor_integer_literal] §Y.4.4.3 p33

real_literal ::= decimal_real_literal §Y.4.4 p32

space_character
The character of ISO 10646 BMP named Space. §Y.4.1 p30

Chapter Y.5. Alphabetized Grammar

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -41-

special_character
Any character of the ISO 10646 BMP that is not reserved for a control
function, and is not the space_character, an identifier_letter,
or a digit. §Y.4.1 p30

string_element ::= "" | non_string_bracket_graphic_character §Y.4.5 p33

string_literal ::= "{string_element}*" §Y.4.5 p33

upper_case_identifier_letter
Any character of Row 00 of ISO 10646 BMP whose name begins

Latin Capital Letter. §Y.4.1 p29

Chapter Y.5. Alphabetized Grammar

Index

not, 13
true, 13
<<>> assertion delimeters, 9
:= Assertion-function, 11
,, open interval, 17
,. open left, 17
., open right, 17
.. closed interval, 17
+=> Assertion-enumeration, 11
ˆ periods hence or previously, 13, 21
-> enumeration pair, 11
-> implies, 12
?? conditional, 22
’ next, 13, 21

actual parameters, 10
all-are, 18
array, 29
Assertion, 9
Assertion annex libraries, 8
Assertion-enumerations, 8
Assertion-functions, 8
assertion-predicate, 10
Assertion-predicates, 8
Assertion-value, 22
Assertion Differs from BA

no local variable properties, 28
port names must have suffix: ? or ’, 29

BA quotation
D.7(10), 28
D.7(11), 28
D.7(4), 27

D.7(9), 28

conditional assertion expression, 22
conditional assertion function, 23
constant, 27

def, 13

event, 19
existential quantification, 18
exists-that, 18

false, 12, 13, 27
formal parameters, 10

in, 13, 18

mod, 20

name, 28
numberof, 20

of, 20

period-shift, 15
predicate, 12
Predicate relations, 16
product, 20

range, 17
Reconciliation

absolute value, 21
inequality, 17

record, 29

42

Assertion AS5506/2 Annex Y AADL STANDARD COMMITTEE DRAFT v0.9 -43-

rem, 20

slice, 29
stop, 13
stop port, 13
sum, 20

time-expression, 14
timed expression, 21
timed predicate, 13
tops, 22
true, 12, 27

universal quantification, 18

variable, 29
variant, 29

Index Index

	Scope
	Assertion
	Assertion Annex Library
	Assertion
	Formal Assertion Parameter
	Assertion-Predicate
	Assertion-Function
	Assertion-Enumeration

	Predicate
	Subpredicate
	Timed Predicate
	Time-Expression
	Period-Shift
	Predicate Invocation
	Predicate Relations
	Parenthesized Predicate
	Universal Quantification
	Existential Quantification
	Event

	Assertion-Expression
	Timed Expression
	Parenthesized Assertion Expression
	Assertion-Value
	Conditional Assertion Expression
	Conditional Assertion Function
	Assertion-Function Invocation
	Assertion-Enumeration Invocation

	Names and Values
	Value Constant
	Property Constant
	Property Reference

	Assertion Name
	Port Value

	Lexicon
	Character Set
	Lexical Elements, Separators, and Delimiters
	Identifiers
	Numeric Literals
	Decimal Literals
	Based Literals
	Rational Literals
	Complex Literals

	String Literals
	Comments

	Alphabetized Grammar
	Index

