
FIO10-C. Take care when using the rename() function
The function has the following prototype:rename()

int rename(const char *src_file, const char *dest_file);

If the file referenced by exists prior to calling , the behavior is . On POSIX systems, the destination file is dest_file rename() implementation-defined
removed. On Windows systems, the fails. Consequently, issues arise when trying to write portable code or when trying to implement alternative rename()
behavior.

Preserve Existing Destination File
If the desired behavior is to ensure that the destination file is not erased or overwritten, POSIX programmers must implement additional safeguards.

Noncompliant Code Example (POSIX)

This code example is noncompliant because any existing destination file is removed by :rename()

const char *src_file = /* ... */;
const char *dest_file = /* ... */;
if (rename(src_file, dest_file) != 0) {
 /* Handle error */
}

Compliant Solution (POSIX)

If the programmer's intent is not to remove an existing destination file, the POSIX function can be used to check for the existence of a file [access() IEEE
]. This compliant solution renames the source file only if the destination file does not exist:Std 1003.1:2013

const char *src_file = /* ... */;
const char *dest_file = /* ... */;

if (access(dest_file, F_OK) != 0) {
 if (rename(src_file, dest_file) != 0) {
 /* Handle error condition */
 }
}
else {
 /* Handle file-exists condition */
}

This code contains an unavoidable race condition between the call to and the call to and can consequently be safely executed only access() rename()
when the destination file is located within a secure directory. (See .)FIO15-C. Ensure that file operations are performed in a secure directory

On file systems where the program does not have sufficient permissions in the directory to view the file, may return even when the file access() -1
exists. In such cases, will also fail because the program lacks adequate permissions to perform the operation.rename()

In situations where the source file is supposed not to be a directory or symbolic link, an alternative solution is to use to link the source file to the link()
destination file and then use (or) to delete the source file. Because fails if the destination file exists, the need for calling unlink() remove() link() acc

 is avoided. However, this solution has two race conditions related to the source file. First, before calling , the program must use ess() link() lstat()
to check that the source file is not a directory or symbolic link. Second, the source file could change during the time window between the and the link() u

. Consequently, this alternative solution can be safely executed only when the source file is located within a secure directory.nlink()

Compliant Solution (Windows)

On Windows, the function fails if arename()

file or directory specified by already exists or could not be created (invalid path). []newname MSDN

Consequently, it is unnecessary to explicitly check for the existence of the destination file before calling .rename()

https://wiki.sei.cmu.edu/confluence/display/c/BB.+Definitions#BB.Definitions-implementation-definedbehavior
https://www.securecoding.cert.org/confluence/display/seccode/AA.+Bibliography#AA.Bibliography-IEEEStd1003.1-2013
https://www.securecoding.cert.org/confluence/display/seccode/AA.+Bibliography#AA.Bibliography-IEEEStd1003.1-2013
https://wiki.sei.cmu.edu/confluence/display/c/FIO15-C.+Ensure+that+file+operations+are+performed+in+a+secure+directory
http://msdn.microsoft.com/en-us/library/zw5t957f(VS.80).aspx
https://wiki.sei.cmu.edu/confluence/display/c/AA.+Bibliography#AA.Bibliography-MSDN

const char *src_file = /* ... */;
const char *dest_file = /* ... */;
if (rename(src_file, dest_file) != 0) {
 /* Handle error */
}

Remove Existing Destination File
If the desired behavior is to ensure that the destination file is erased by the operation, Windows programmers must write additional code.rename()

Noncompliant Code Example (Windows)

If the intent of the programmer is to remove the file referenced by if it exists prior to calling , this code example is noncompliant on dest_file rename()
Windows platforms because will fail:rename()

const char *src_file = /* ... */;
const char *dest_file = /* ... */;
if (rename(src_file, dest_file) != 0) {
 /* Handle error */
}

Compliant Solution (Windows)

On Windows systems, it is necessary to explicitly remove the destination file before calling if the programmer wants the file to be overwritten rename()
and the operation to succeed:rename()

const char *src_file = /* ... */;
const char *dest_file = /* ... */;

if (_access_s(dest_file, 0) == 0) {
 if (remove(dest_file) != 0) {
 /* Handle error condition */
 }
}

if (rename(src_file, dest_file) != 0) {
 /* Handle error condition */
}

This code contains unavoidable race conditions between the calls to , , and and can consequently be safely executed _access_s() remove() rename()
only within a secure directory. (See .) Another option would be to use the FIO15-C. Ensure that file operations are performed in a secure directory MoveFile

 API and pass in the flag:Ex MOVEFILE_REPLACE_EXISTING

const char *src_file = /* ... */;
const char *dest_file = /* ... */;

if (!MoveFileEx(src_file, dest_file, MOVEFILE_REPLACE_EXISTING)) {
 /* Handle error condition */
}

Although this code is not portable, it does avoid the race condition when using , , and ._access_s() remove() rename()

Compliant Solution (POSIX)

On POSIX systems, if the destination file exists prior to calling , the file is automatically removed:rename()

https://wiki.sei.cmu.edu/confluence/display/c/FIO15-C.+Ensure+that+file+operations+are+performed+in+a+secure+directory
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365240(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365240(v=vs.85).aspx

const char *src_file = /* ... */;
const char *dest_file = /* ... */;
if (rename(src_file, dest_file) != 0) {
 /* Handle error condition */
}

Portable Behavior
A programmer who wants an application to behave the same on any C must first determine what behavior to implement.implementation

Compliant Solution (Remove Existing Destination File)

This compliant solution ensures that any destination file is portably removed:

const char *src_file = /* ... */;
const char *dest_file = /* ... */;

(void)remove(dest_file);

if (rename(src_file, dest_file) != 0) {
 /* Handle error condition */
}

This code contains an unavoidable race condition between the call to and the call to and consequently can be safely executed only remove() rename()
within a secure directory. (See .)FIO15-C. Ensure that file operations are performed in a secure directory

The return value of is deliberately not checked because it is expected to fail if the file does not exist. If the file exists but cannot be removed, the remove()
 call will also fail, and the error will be detected at that point. This is a valid exception (EXP12-C-EX1) to rename() EXP12-C. Do not ignore values

.returned by functions

Compliant Solution (Preserve Existing Destination File)

This compliant solution renames the source file only if the destination file does not exist:

const char *src_file = /* ... */;
const char *dest_file = /* ... */;

if (!file_exists(dest_file)) {
 if (rename(src_file, dest_file) != 0) {
 /* Handle error condition */
 }
}
else {
 /* Handle file-exists condition */
}

This code contains an unavoidable race condition between the call to and the call to and can consequently be safely file_exists() rename()
executed only within a secure directory. (See .)FIO15-C. Ensure that file operations are performed in a secure directory

The function is provided by the application and is not shown here because it must be implemented differently on different platforms. (On file_exists()
POSIX systems, it would use ; on Windows, ; and on other platforms, whatever function is available to test file existence.)access() _access_s()

Risk Assessment

Calling has behavior when the new file name refers to an existing file. Incorrect use of can result in a file rename() implementation-defined rename()
being unexpectedly overwritten or other .unexpected behavior

Recommendation Severity Likelihood Remediation Cost Priority Level

FIO10-C Medium Probable Medium P8 L2

Automated Detection

https://wiki.sei.cmu.edu/confluence/display/c/BB.+Definitions#BB.Definitions-implementation
https://wiki.sei.cmu.edu/confluence/display/c/FIO15-C.+Ensure+that+file+operations+are+performed+in+a+secure+directory
https://wiki.sei.cmu.edu/confluence/display/c/EXP12-C.+Do+not+ignore+values+returned+by+functions
https://wiki.sei.cmu.edu/confluence/display/c/EXP12-C.+Do+not+ignore+values+returned+by+functions
https://wiki.sei.cmu.edu/confluence/display/c/FIO15-C.+Ensure+that+file+operations+are+performed+in+a+secure+directory
https://wiki.sei.cmu.edu/confluence/display/c/BB.+Definitions#BB.Definitions-implementation-definedbehavior
https://wiki.sei.cmu.edu/confluence/display/c/BB.+Definitions#BB.Definitions-unexpectedbehavior

Tool Version Checker Description

CodeSonar 5.0p0 (customization) Users can add a custom check for all uses of .rename()

LDRA tool suite 9.7.1 592 S Fully Implemented

PRQA QA-C 9.5 5015 Partially implemented

Related Vulnerabilities

Search for resulting from the violation of this rule on the .vulnerabilities CERT website

Related Guidelines

SEI CERT C++ Coding Standard VOID FIO10-CPP. Take care when using the rename() function

Bibliography

[]IEEE Std 1003.1:2013 XSH, System Interfaces, access

[]MSDN rename()

https://wiki.sei.cmu.edu/confluence/display/c/CodeSonar
https://wiki.sei.cmu.edu/confluence/display/c/LDRA
https://wiki.sei.cmu.edu/confluence/display/c/PRQA+QA-C
https://wiki.sei.cmu.edu/confluence/display/c/BB.+Definitions#BB.Definitions-vulnerability
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+KEYWORDS+contains+FIO10-C
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046796
https://www.securecoding.cert.org/confluence/display/seccode/AA.+Bibliography#AA.Bibliography-IEEEStd1003.1-2013
https://wiki.sei.cmu.edu/confluence/display/c/AA.+Bibliography#AA.Bibliography-MSDN
http://msdn.microsoft.com/en-us/library/zw5t957f%28VS.80%29.aspx
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152342
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87151932
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=87152174

	FIO10-C. Take care when using the rename() function

