The sizeof operator yields the size (in bytes) of its operand, which may be an expression or the parenthesized name of a type. However, using the sizeof operator to determine the size of arrays is error prone.
Non-Compliant Code Example
| Wiki Markup |
|---|
In this non-compliant code example, the function {{clear()}} zeros the elements in an array. The function has one parameter declared as {{int array\[\]}} and is passed a static array consisting of twelve {{int}} as the argument. The function {{clear()}} uses the idiom {{sizeof (array) / sizeof (array\[0\])}} to determine the number of elements in the array. However, {{array}} has a pointer type because it is a parameter. As a result, {{sizeof(array)}} is {{sizeof(int \*)}}. For example, in GCC on IA32, the expression {{sizeof (array) / sizeof (array\[0\])}} evaluates to 1, regardless of the length of the array passed, leaving the rest of the array unaffected. |
...
This applies to all array parameters, even if the parameter declaration contains an index.
Compliant Solution
In this compliant solution, the size of the array is determined inside the block in which it is declared and passed as an argument to the function.
| Code Block | ||
|---|---|---|
| ||
void clear(int array[], size_t size) {
size_t i;
for (i = 0; i < size; i++) {
array[i] = 0;
}
}
/* ... */
int dis[12];
clear(dis, sizeof (dis) / sizeof (dis[0]));
/* ... */
|
Risk Assessment
Incorrectly using the sizeof operator to determine the size of an array can result in a buffer overflow, allowing the execution of arbitrary code.
Recommendation | Severity | Likelihood | Remediation Cost | Priority | Level |
|---|---|---|---|---|---|
ARR00 ARR01-A | 3 ( high ) | 2 ( probable ) | 3 ( low ) | P18 | L1 |
Automated Detection
The LDRA tool suite V 7.6.0 is able to detect violations of this recommendation.
The tool Compass Rose can detect violations of the recommendation, but it cannot distinguish between incomplete array declarations and pointer declarations.
Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
References
| Wiki Markup |
|---|
\[[ISO/IEC 9899-1999|AA. C References#ISO/IEC 9899-1999]\] Section 6.7.5.2, "Array declarators" \[[Drepper 06|AA. C References#Drepper 06]\] Section 2.1.1, "Respecting Memory Bounds" |
...
06. Arrays (ARR)ARR00-A. Understand how arrays work 06. Arrays (ARR) ARR30-C. Guarantee that array indices are within the valid range