...
In this noncompliant code example, the set_flag() function is intended to set the variable sign to 1 if number is positive and -1 if number is negative. However, the programmer neglected to account for number being 0. If number is 0, then sign remains uninitialized. Because sign is uninitialized, and again assuming that the architecture makes use of a program stack, it uses whatever value is at that location in the program stack. This may lead to unexpected or otherwise incorrect program behavior.
| Code Block | 
|---|
|  | 
| 
void set_flag(int number, int *sign_flag) {
  if (sign_flag == NULL) {
    return;
  }
  if (number > 0) {
    *sign_flag = 1;
  }
  else if (number < 0) {
    *sign_flag = -1;
  }
}
void func(int number) {
  int sign;
  set_flag(number, &sign);
  /* use sign */
}
 | 
...
This defect results from a failure to consider all possible data states (see MSC01-CPP. Strive for logical completeness). Once the problem is identified, it can be trivially repaired by accounting for the possibility that number can be equal to 0.
| Code Block | 
|---|
|  | 
| 
void set_flag(int number, int *sign_flag) {
  if (sign_flag == NULL) {
    return;
  }
  if (number >= 0) { /* account for number being 0 */
    *sign_flag = 1;
  } else {
    assert(number < 0);
    *sign_flag = -1;
  }
}
void func(int number) {
  int sign;
  set_flag(number, &sign);
  /* use sign */
}
 | 
...
| Wiki Markup | 
|---|
| In this noncompliant code example, the programmer mistakenly fails to set the local variable {{error_log}} to the {{msg}} argument in the {{report_error()}} function \[[mercy 06|AA. Bibliography#mercy 06]\].  Because {{error_log}} has not been initialized, on architectures making use of a program stack, it assumes the value already on the stack at this location, which is a pointer to the stack memory allocated to the {{password}} array.  The {{sprintf()}} call copies data in {{password}} until a null byte is reached. If the length of the string stored in the {{password}} array is greater than the size of the {{buffer}} array, then a buffer overflow occurs. | 
| Code Block | 
|---|
|  | 
| 
#include <stdio.h>
#include <ctype.h>
#include <string.h>
int do_auth(void) {
  char *username;
  char *password;
  /* Get username and password from user, return -1 if invalid */
}
void report_error(const char *msg) {
  const char *error_log;
  char buffer[24];
  sprintf(buffer, "Error: %s", error_log);
  printf("%s\n", buffer);
}
int main(void) {
  if (do_auth() == -1) {
    report_error("Unable to login");
  }
  return 0;
}
 | 
...
In this noncompliant code example, the report_error() function has been modified so that error_log is properly initialized.
| Code Block | 
|---|
|  | 
| 
void report_error(const char *msg) {
  const char *error_log = msg;
  char buffer[24];
  sprintf(buffer, "Error: %s", error_log);
  printf("%s\n", buffer);
}
 | 
...
In this solution, the magic number is abstracted and the buffer overflow is eliminated.
| Code Block | 
|---|
|  | 
| 
enum {max_buffer = 24};
void report_error(const char *msg) {
  const char *error_log = msg;
  char buffer[max_buffer];
  snprintf(buffer, sizeof( buffer), "Error: %s", error_log);
  cout << buffer << endl;
}
 | 
...
A much simpler, less error prone, and better performing compliant solution is shown below.
| Code Block | 
|---|
|  | 
| 
void report_error(const char *msg) {
  cout << "Error: " << msg << endl;
}
 | 
...