Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

The C Standard, 6.2.5, paragraph 9 11 [ISO/IEC 9899:20112024], states

A computation involving unsigned operands can never produce an overflow, because a result that cannot be represented by the resulting unsigned integer type is reduced modulo the number that is one greater than the largest value that can be represented by the resulting typearithmetic for the unsigned type is performed modulo 2^N .

This behavior is more informally called unsigned integer wrapping. Unsigned integer operations can wrap if the resulting value cannot be represented by the underlying representation of the integer. The following table indicates which operators can result in wrapping:

...

Code Block
bgColor#ccccff
langc
void func(unsigned int ui_a, unsigned int ui_b) {
  unsigned int usum = ui_a + ui_b;
  if (usum < ui_a) {
    /* Handle error */
  }
  /* ... */
}

...

Compliant Solution (C23, Checked Integers)

This compliant solution uses the new-to-C23 checked integer arithmetic to safely perform integer addition:

Code Block
bgColor#ccccff
langc
#include <stdckdint.h>

void func(unsigned int ui_a, unsigned int ui_b) {
  unsigned int usum;
  if (ckd_add(&usum, ui_a, ui_b)) {
    /* Handle error */
  }

...

Subtraction

Subtraction is between two operands of arithmetic type, two pointers to qualified or unqualified versions of compatible object types, or a pointer to an object type and an integer type. This rule applies only to subtraction between two operands of arithmetic type. (See ARR36-C. Do not subtract or compare two pointers that do not refer to the same array, ARR37-C. Do not add or subtract an integer to a pointer to a non-array object, and ARR30-C. Do not form or use out-of-bounds pointers or array subscripts for information about pointer subtraction.)

Decrementing is equivalent to subtracting 1.

Noncompliant Code Example

This noncompliant code example can result in an unsigned integer wrap during the subtraction of the unsigned operands ui_a and ui_b. If this behavior is unanticipated, it may lead to an exploitable vulnerability.

Code Block
bgColor#FFcccc
langc
void func(unsigned int ui_a, unsigned int ui_b) {
  unsigned int udiff = ui_a - ui_b;
  /* ... */
}

Compliant Solution (Precondition Test)

This compliant solution performs a precondition test of the unsigned operands of the subtraction operation to guarantee there is no possibility of unsigned wrap:

Anchor
Subtraction
Subtraction

Subtraction

Subtraction is between two operands of arithmetic type, two pointers to qualified or unqualified versions of compatible object types, or a pointer to an object type and an integer type. This rule applies only to subtraction between two operands of arithmetic type. (See ARR36-C. Do not subtract or compare two pointers that do not refer to the same array, ARR37-C. Do not add or subtract an integer to a pointer to a non-array object, and ARR30-C. Do not form or use out-of-bounds pointers or array subscripts for information about pointer subtraction.)

Decrementing is equivalent to subtracting 1.

Noncompliant Code Example

This noncompliant code example can result in an unsigned integer wrap during the subtraction of the unsigned operands ui_a and ui_b. If this behavior is unanticipated, it may lead to an exploitable vulnerability.

Code Block
bgColor#FFcccc
langc
void func(unsigned int ui_a, unsigned int ui_b) {
  unsigned int udiff = ui_a - ui_b;
  /* ... */
}

Compliant Solution (Precondition Test)

This compliant solution performs a precondition test of the unsigned operands of the subtraction operation to guarantee there is no possibility of unsigned wrap:

Code Block
bgColor#ccccff
langc
void func(unsigned int ui_a, unsigned int ui_b) {
  unsigned int udiff;
  if (ui_a < ui_b){
    /* Handle error */
  } else {
    udiff = ui_a - ui_b;
  }
  /* ... */
}

Compliant Solution (Postcondition Test)

This compliant solution performs a postcondition test that the result of the unsigned subtraction operation udiff is not greater than the minuend:

Code Block
bgColor#ccccff
langc
void func(unsigned int ui_a, unsigned int ui_b) {
  unsigned int udiff = ui_a - ui_b;
  if (udiff > ui_a) {
    /* Handle error */
  }
  /* ... */
}

Compliant Solution (C23, Checked Integers)

This compliant solution uses the new-to-C23 checked integer arithmetic to safely perform integer subtraction:

Code Block
bgColor#ccccff
langc
#include <stdckdint.h>

void func(unsigned int ui_a, unsigned int ui_
Code Block
bgColor#ccccff
langc
void func(unsigned int ui_a, unsigned int ui_b) {
  unsigned int udiff;
  if (  if (ckd_sub(&udiff, ui_a <, ui_b)) {
    /* Handle error */
  } else {
    udiff = ui_a - ui_b;
  }
  /* ... */
}

Compliant Solution (Postcondition Test)

This compliant solution performs a postcondition test that the result of the unsigned subtraction operation udiff is not greater than the minuend:

Code Block
bgColor#ccccff
langc
void func(unsigned int ui_a, unsigned int ui_b) {
  unsigned int udiff = ui_a - ui_b;
  if (udiff > ui_a) {
    /* Handle error */
  }
  /* ... */
}

...

Multiplication

Multiplication is between two operands of arithmetic type.

Noncompliant Code Example

...

Anchor
Multiplication
Multiplication

Multiplication

Multiplication is between two operands of arithmetic type.

Noncompliant Code Example

The Mozilla Foundation Security Advisory 2007-01 describes a heap buffer overflow vulnerability in the Mozilla Scalable Vector Graphics (SVG) viewer resulting from an unsigned integer wrap during the multiplication of the signed int value pen->num_vertices and the size_t value sizeof(cairo_pen_vertex_t) [VU#551436]. The signed int operand is converted to size_t prior to the multiplication operation so that the multiplication takes place between two size_t integers, which are unsigned. (See INT02-C. Understand integer conversion rules.)

Code Block
bgColor#FFcccc
langc
pen->num_vertices = _cairo_pen_vertices_needed(
  gstate->tolerance, radius, &gstate->ctm
);
pen->vertices = malloc(
  pen->num_vertices * sizeof(cairo_pen_vertex_t)
);

The unsigned integer wrap can result in allocating memory of insufficient size.

Compliant Solution

This compliant solution tests the operands of the multiplication to guarantee that there is no unsigned integer wrap:) [VU#551436]. The signed int operand is converted to size_t prior to the multiplication operation so that the multiplication takes place between two size_t integers, which are unsigned. (See INT02-C. Understand integer conversion rules.)

Code Block
bgColor#FFcccc#ccccff
langc
pen->num_vertices = _cairo_pen_vertices_needed(
  gstate->tolerance, radius, &gstate->ctm
);

if (pen->num_vertices > SIZE_MAX / sizeof(cairo_pen_vertex_t)) {
  /* Handle error */
}
pen->vertices = malloc(
  pen->num_vertices * sizeof(cairo_pen_vertex_t)
);

...

Compliant Solution (C23, Checked Integers)

This compliant solution tests the operands of the multiplication to guarantee that there is no unsigned integer wrap:uses the new-to-C23 checked integer arithmetic to safely perform integer multiplication:

Code Block
bgColor#ccccff
langc
#include <stdckdint.h>

/* ... */

Code Block
bgColor#ccccff
langc
pen->num_vertices = _cairo_pen_vertices_needed(
  gstate->tolerance, radius, &gstate->ctm
);

size_t product;
if (ckd_mul(&product, pen->num_vertices > SIZE_MAX /, sizeof(cairo_pen_vertex_t))) {
  /* Handle error */
}

pen->vertices = malloc(
  pen->num_vertices * sizeof(cairo_pen_vertex_t)
);
 malloc(product);

Exceptions

INT30-C-EX1: Unsigned integers can exhibit modulo behavior (wrapping) when necessary for the proper execution of the program. It is recommended that the variable declaration be clearly commented as supporting modulo behavior and that each operation on that integer also be clearly commented as supporting modulo behavior.

...

Risk Assessment

Integer wrap can lead to buffer overflows and the execution of arbitrary code by an attackercan lead to buffer overflows and the execution of arbitrary code by an attacker. Note that this rule is not automatically repairable in contrast to INT32-C. Ensure that operations on signed integers do not result in overflow. This is because integer wrapping is occasionally intended (see INT30-C-EX1), and repairing such wrapping would turn correct code into code that spuriously signals wraparound errors.

Rule

Severity

Likelihood

Detectable

Remediation CostRepairable

Priority

Level

INT30-C

High

Likely

No

HighNo

P9

L2

Automated Detection

Tool

Version

Checker

Description

Astrée
Include Page
Astrée_V
Astrée_V
integer-overflowFully checked
Axivion Bauhaus Suite

Include Page
cplusplus:Axivion Bauhaus Suite_V
cplusplus:Axivion Bauhaus Suite_V

CertC-INT30Implemented
CodeSonar
Include Page
CodeSonar_V
CodeSonar_V

ALLOC.SIZE.ADDOFLOW
ALLOC.SIZE.IOFLOW
ALLOC.SIZE.MULOFLOW
ALLOC.SIZE.SUBUFLOW
MISC.MEM.SIZE.ADDOFLOW
MISC.MEM.SIZE.BAD
MISC.MEM.SIZE.MULOFLOW
MISC.MEM.SIZE.SUBUFLOW

Addition overflow of allocation size
Integer overflow of allocation size
Multiplication overflow of allocation size
Subtraction underflow of allocation size
Addition overflow of size
Unreasonable size argument
Multiplication overflow of size
Subtraction underflow of size

Compass/ROSE



Can detect violations of this rule by ensuring that operations are checked for overflow before being performed (Be mindful of exception INT30-EX2 because it excuses many operations from requiring validation, including all the operations that would validate a potentially dangerous operation. For instance, adding two unsigned ints together requires validation involving subtracting one of the numbers from UINT_MAX, which itself requires no validation because it cannot wrap.)

Coverity
Include Page
Coverity_V
Coverity_V
INTEGER_OVERFLOWImplemented
Cppcheck Premium

Include Page
Cppcheck Premium_V
Cppcheck Premium_V

premium-cert-int30-c
Helix QAC

Include Page
Helix QAC_V
Helix QAC_V

C2910, C3383, C3384, C3385, C3386

C++2910

DF2911, DF2912, DF2913,


Klocwork
Include Page
Klocwork_V
Klocwork_V

NUM.OVERFLOW
CWARN.NOEFFECT.OUTOFRANGE
NUM.OVERFLOW.DF


LDRA tool suite
Include Page
LDRA_V
LDRA_V
493 S, 494 SPartially implemented
Parasoft C/C++test

Include Page
Parasoft_V
Parasoft_V

CERT_C-INT30-a
CERT_C-INT30-b
CERT_C-INT30-c

Avoid wraparounds when performing arithmetic integer operations
Integer overflow or underflow in constant expression in '+', '-', '*' operator
Integer overflow or underflow in constant expression in '<<' operator

Polyspace Bug Finder

Include Page
Polyspace Bug Finder_V
Polyspace Bug Finder_V

CERT C: Rule INT30-C

Checks for:

  • Unsigned integer overflow
  • Unsigned integer constant overflow

Rule partially covered.

PVS-Studio

Include Page
PVS-Studio_V
PVS-Studio_V

V658, V1012V1028, V5005, V5011 

TrustInSoft Analyzer

Include Page
TrustInSoft Analyzer_V
TrustInSoft Analyzer_V

unsigned overflowExhaustively verified.

Related Vulnerabilities

CVE-2009-1385 results from a violation of this rule. The value performs an unchecked subtraction on the length of a buffer and then adds those many bytes of data to another buffer [xorl 2009]. This can cause a buffer overflow, which allows an attacker to execute arbitrary code.

...

[Bailey 2014]Raising Lazarus - The 20 Year Old Bug that Went to Mars
[Dowd 2006]Chapter 6, "C Language Issues" ("Arithmetic Boundary Conditions," pp. 211–223)
[ISO/IEC 9899:20112024]Subclause 6.2.5, "Types"
[Seacord 2013b]Chapter 5, "Integer Security"
[Viega 2005]Section 5.2.7, "Integer Overflow"
[VU#551436]
[Warren 2002]Chapter 2, "Basics"
[Wojtczuk 2008]
[xorl 2009]"CVE-2009-1385: Linux Kernel E1000 Integer Underflow"

...