Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: REM Cost Reform

Mutexes are often used to prevent multiple threads from accessing critical resources at the same time. Sometimes, when locking mutexes, multiple threads hold each other's lock, and the program consequently deadlocks. There are four requirements for deadlock:

  • mutual Mutual exclusion
  • hold Hold and wait
  • no No preemption
  • circular Circular wait

Deadlock requires all four conditions, so to prevent deadlock, prevent any one of the four conditions. This guideline recommends locking the mutexes in a predefined order to prevent circular wait. This rule is a specific instance of CON35-C. Avoid deadlock by locking in predefined order using POSIX threads.

Noncompliant Code Example

The following This noncompliant code example has behavior that depends on the runtime environment and the platform's scheduler. However, with proper timing, the main() function will deadlock when running thr1 and thr2, where thr1 tries to lock ba2's mutex, while thr2 tries to lock on ba1's mutex in the deposit() function, and the program will not progress.

Code Block
bgColor#ffcccc
langc
typedef struct {
  int balance;
  pthread_mutex_t balance_mutex;
} bank_account;

typedef struct {
  bank_account *from;
  bank_account *to;
  int amount;
} deposit_thr_args;

void create_bank_account(bank_account **ba, int initial_amount) {
  int result;
  bank_account *nba = malloc(sizeof(bank_account));
  if (nba == NULL) {
    /* Handle Errorerror */
  }

  nba->balance = initial_amount;
  result = pthread_mutex_init(&nba->balance_mutex, NULL);
  if (result) {
    /* Handle Errorerror */
  }

  *ba = nba;
}


void *deposit(void *ptr) {
  int result;
  deposit_thr_args *args = (deposit_thr_args *)ptr;

  if ((result = pthread_mutex_lock(&(args->from->balance_mutex))) != 0) {
    /* Handle Errorerror */
  }

  /* notNot enough balance to transfer */
  if (args->from->balance < args->amount) {
    if ((result = pthread_mutex_unlock(&(args->from->balance_mutex))) != 0) {
      /* Handle Errorerror  */
    }
    return NULL;
  }

  if ((result = pthread_mutex_lock(&(args->to->balance_mutex))) != 0) {
    /* Handle Errorerror */
  }

  args->from->balance -= args->amount;
  args->to->balance += args->amount;

  if ((result = pthread_mutex_unlock(&(args->from->balance_mutex))) != 0) {
    /* Handle Errorerror */
  }
  if ((result = pthread_mutex_unlock(&(args->to->balance_mutex))) != 0) {
    /* Handle Errorerror */
  }


  free(ptr);
  return NULL;
}


int main(void) {

  pthread_t thr1, thr2;
  int result;

  bank_account *ba1;
  bank_account *ba2;
  create_bank_account(&ba1, 1000);
  create_bank_account(&ba2, 1000);

  deposit_thr_args *arg1 = malloc(sizeof(deposit_thr_args));
  if (arg1 == NULL) {
    /* Handle Errorerror */
  }
  deposit_thr_args *arg2 = malloc(sizeof(deposit_thr_args));
  if (arg2 == NULL) {
    /* Handle Errorerror */
  }

  arg1->from = ba1;
  arg1->to = ba2;
  arg1->amount = 100;

  arg2->from = ba2;
  arg2->to = ba1;
  arg2->amount = 100;

  /* performPerform the deposits */
  if ((result = pthread_create(&thr1, NULL, deposit, (void *)arg1)) != 0) {
    /* Handle Errorerror */
  }
  if ((result = pthread_create(&thr2, NULL, deposit, (void *)arg2)) != 0) {
    /* Handle Errorerror */
  }

  pthread_exit(NULL);
  return 0;
}

...

The solution to the deadlock problem is to use a predefined order for the locks in the deposit() function. In the following this compliant solution, each thread will lock an on the basis of the bank_account ID, defined in the struct initialization. This solution prevents the circular wait problem.:

Code Block
bgColor#ccccff
langc
typedef struct {
  int balance;
  pthread_mutex_t balance_mutex;
  unsigned int id; /* shouldShould never be changed after initialized */
} bank_account;

unsigned int global_id = 1;

void create_bank_account(bank_account **ba, int initial_amount) {
  int result;
  bank_account *nba = malloc(sizeof(bank_account));
  if (nba == NULL) {
    /* Handle Errorerror */
  }

  nba->balance = initial_amount;
  result = pthread_mutex_init(&nba->balance_mutex, NULL);
  if (result != 0) {
    /* Handle Errorerror */
  }

  nba->id = global_id++;
  *ba = nba;
}


void *deposit(void *ptr) {
  deposit_thr_args *args = (deposit_thr_args *)ptr;
  int result;

  if (args->from->id == args->to->id)
		return;

  /* ensureEnsure proper ordering for locking */
  if (args->from->id < args->to->id) {
    if ((result = pthread_mutex_lock(&(args->from->balance_mutex))) != 0) {
      /* Handle Errorerror */
    }
    if ((result = pthread_mutex_lock(&(args->to->balance_mutex))) != 0) {
      /* Handle Errorerror */
    }
  } else {
    if ((result = pthread_mutex_lock(&(args->to->balance_mutex))) != 0) {
      /* Handle Errorerror */
    }
    if ((result = pthread_mutex_lock(&(args->from->balance_mutex))) != 0) {
      /* Handle Errorerror */
    }
  }

  /* notNot enough balance to transfer */
  if (args->from->balance < args->amount) {
    if ((result = pthread_mutex_unlock(&(args->from->balance_mutex))) != 0) {
      /* Handle Errorerror */
    }
    if ((result = pthread_mutex_unlock(&(args->to->balance_mutex))) != 0) {
      /* Handle Errorerror */
    }
    return;
  }

  args->from->balance -= args->amount;
  args->to->balance += args->amount;

  if ((result = pthread_mutex_unlock(&(args->from->balance_mutex))) != 0) {
    /* Handle Errorerror */
  }
  if ((result = pthread_mutex_unlock(&(args->to->balance_mutex))) != 0) {
    /* Handle Errorerror */
  }


  free(ptr);
  return;
}

Risk Assessment

Deadlock prevents multiple threads from progressing, thus halting the executing program. A denial-of-service attack is possible because the attacker can force deadlock situations. Deadlock is likely to occur in multithreaded programs that manage multiple shared resources.

Recommendation

Severity

Likelihood

Detectable

Remediation Cost

Repairable

Priority

Level

POS51-C

Low

low

Probable

probable

No

medium

No

P4

L3

Related Guidelines

...

P2

L3

Automated Detection

ToolVersionCheckerDescription
Astrée
Include Page
Astrée_V
Astrée_V

Supported: Astrée reports all potential deadlocks.
CodeSonar
Include Page
CodeSonar_V
CodeSonar_V
CONCURRENCY.LOCK.ORDERConflicting lock order
Helix QAC

Include Page
Helix QAC_V
Helix QAC_V

C1772, C1773
Klocwork
Include Page
Klocwork_V
Klocwork_V

CONC.DL
CONC.NO_UNLOCK


Parasoft C/C++test

Include Page
Parasoft_V
Parasoft_V

CERT_C-POS51-a

Do not acquire locks in different order

Polyspace Bug Finder

Include Page
Polyspace Bug Finder_V
Polyspace Bug Finder_V

CERT C: Rule POS51-C

Checks for deadlock (rule fully covered)

Related Guidelines

Key here (explains table format and definitions)

MITRE CWE: CWE-764 Multiple locks of critical resources

...

Prior to 2018-01-12: CERT: Unspecified Relationship

CERT-CWE Mapping Notes

Key here for mapping notes

CWE-764 and POS51-C/POS35-C

Independent( CWE-764, POS51-C, POS35-C)

CWE-764 is about semaphores, or objects capable of being locked multiple times. Deadlock arises from multiple locks being acquired in a cyclic order, and generally does not arise from semaphores or recursive mutexes.

Bibliography

[Barney 2010]pthread_mutex tutorial
[Bryant 2003]Chapter 13, "Concurrent Programming"


...

Image Modified Image Modified Image Modified