Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: REM Cost Reform

The C programming language provides the ability to use floating-point numbers for calculations. C99 specifies  The C Standard specifies requirements on a conforming implementation for floating-point numbers but makes few guarantees about the specific underlying floating-point representation because of the existence of competing floating-point systems.

By definition, a floating-point number is of finite precision and, regardless of the underlying implementation, is prone to errors associated with rounding. (see See FLP01-C. Take care in rearranging floating-point expressions and FLP02-C. Consider avoiding Avoid using floating-point numbers when precise computation is needed.).

The most common floating-point system is specified by the IEEE 754 standard. An older floating-point system is the IBM floating-point representation (sometimes referred to as sometimes called IBM/370). Each of these systems has differing different precisions and ranges of representable values. As a result, they do not represent all of the same values, are not binary compatible, and have differing different associated error rates.

Because of a lack of guarantees on the specifics of the underlying floating-point system, no assumptions can be made about either precision or range. Even if code is not intended to be portable, the chosen compiler's behavior must be well understood at all compiler optimization levels.

Here is a simple illustration of precision limitations. The following code prints the decimal representation of 1/3 to 50 decimal places. Ideally, it would print 50 numeral 3s.:

Code Block

#include <stdio.h>

int main(void) {
  float f = 1.00f / 3.00f;
  printf("Float is %.50f\n", f);
  return 0;
}

On 64-bit Linux, with GCC Compiler 4.1, this it produces:

Code Block

Float is 0.33333334326744079589843750000000000000000000000000

On 64-bit Windows XP, with Microsoft Visual C++ Compiler 9.0, this produces:Studio 2012, it produces

Code Block

Float is 0.33333334326744080000000000000000000000000000000000

...

Additionally, compilers may treat floating-point variables differently under different levels of optimization \ [[Gough 2005|AA. C References#Gough 2005]\].:

Code Block

double a = 3.0;
double b = 7.0;
double c = a / b;

if (c == a / b) {
  printf("Comparison succeeds\n");
} else {
  printf("Unexpected result\n");
}

When compiled on an IA-32 Linux machine with GCC Compiler Version 3.4.4 at optimization level 1 or higher, or on a test an IA-32 Windows XP machine 64 Windows machine with Microsoft Visual C++ Express 8.0Studio 2012 in Debug or Release mode, this code prints:

Code Block

Comparison succeeds

On an IA-32 Linux machine with GCC Compiler Version 3.4.4 with optimization turned off, this code prints:

Code Block

Unexpected result

...

The reason for this behavior is that Linux uses the internal extended precision mode of the x87 floating-point unit (FPU) on IA-32 machines for increased accuracy during computation. When the result is stored into memory by the assignment to {{c}}, the FPU automatically rounds the result to fit into a {{double}}. The value read back from memory now compares unequally to the internal representation, which has extended precision. Windows does not use the extended precision mode, so all computation is done with double precision, and there are no differences in precision between values stored in memory and those internal to the FPU. For gcc, compiling at optimization level 1 or higher eliminates the unnecessary store into memory, so all computation happens within the FPU with extended precision \[[Gough 2005|AA. C References#Gough 2005]\]to the FPU. For GCC, compiling at optimization level 1 or higher eliminates the unnecessary store into memory, so all computation happens within the FPU with extended precision [Gough 2005].

The standard constant __FLT_EPSILON__ can be used to evaluate if two floating-point values are close enough to be considered equivalent given the granularity of floating-point operations for a given implementation. __FLT_EPSILON__ represents the difference between 1 and the least value greater than 1 that is representable as a float. The granularity of a floating-point operation is determined by multiplying the operand with the larger absolute value by __FLT_EPSILON__.

Code Block
#include <math.h>
float RelDif(float a, float b) {
  float c = fabsf(a);
  float d = fabsf(b);

  d = fmaxf(c, d);

  return d == 0.0f ? 0.0f : fabsf(a - b) / d;
}

/* ... */

float a = 3.0f;
float b = 7.0f;
float c = a / b;

if (RelDif(c, a / b) <= __FLT_EPSILON__) {
  puts("Comparison succeeds");
} else {
  puts("Unexpected result");
}

On all tested platforms, this code prints

Code Block
Comparison succeeds

For double precision and long double precision floating-point values, use a similar approach using the __DBL_EPSILON__ and __LDBL_EPSILON__ constants, respectively.

Consider using numerical analysis to properly understand the numerical properties of the problem.

Risk Assessment

Failing to understand the limitations of floating-point numbers can result in unexpected mathematical computational results and exceptional conditions, possibly resulting in a violation of data integrity.

Recommendation

Severity

Likelihood

Remediation Cost

Detectable

Repairable

Priority

Level

FLP00-C

Medium

medium

Probable

probable

No

high

No

P4

L3

Automated Detection

Tool

Version

Checker

Description

CodeSonar

Include Page
CodeSonar_V
CodeSonar_V

LANG.ARITH.FMULOFLOW
LANG.ARITH.FPEQUAL
Float multiplication overflow
Floating point equality
ECLAIR
Include Page
ECLAIR_V
ECLAIR_V
CC2.FLP00Fully implemented
Helix QAC

Include Page
Helix QAC_V
Helix QAC_V

C0275, C0581, C1490, C3339,
C3340, C3341, C3342, C3362


Parasoft C/C++test
Include Page
Parasoft_V
Parasoft_V

CERT_C-FLP00-a

Floating-point expressions shall not be tested for equality or inequality
PC-lint Plus

Include Page
PC-lint Plus_V
PC-lint Plus_V

777, 9252

Partially supported

Polyspace Bug Finder

Include Page
Polyspace Bug Finder_V
Polyspace Bug Finder_V

CERT C: Rec. FLP00-CChecks for absorption of float operand (rec. partially covered)

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule recommendation on the CERT website.

Other Languages

...

Related Guidelines


...

...

...

Bibliography

[Gough 2005]Section 8.6, "Floating-Point Issues"
[Hatton 1995]Section 2.7.3, "Floating-Point Misbehavior"
[IEEE 754 2006]
[Lockheed Martin 2005]AV Rule 202, Floating-point variables shall not be tested for exact equality or inequality


...

Image Added Image Added Image Added

References

Wiki Markup
\[[Gough 2005|AA. C References#Gough 2005]\] [Section 8.6, "Floating-point issues"|http://www.network-theory.co.uk/docs/gccintro/gccintro_70.html]
\[[IEEE 754 2006|AA. C References#IEEE 754 2006]\]
\[[ISO/IEC 9899:1999|AA. C References#ISO/IEC 9899-1999]\] Section 5.2.4.2.2, "Characteristics of floating types {{<float.h>}}"
\[[ISO/IEC PDTR 24772|AA. C References#ISO/IEC PDTR 24772]\] "PLF Floating Point Arithmetic"

05. Floating Point (FLP)      05. Floating Point (FLP)      FLP01-C. Take care in rearranging floating point expressions