Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: REM Cost Reform

The cnd_wait() and cnd_timedwait() functions temporarily cede possession of a mutex so that other threads that may be requesting the mutex can proceed. These functions must always be called from code that is protected by locking a lockmutex. The waiting thread resumes execution only after it has been notified, generally as the result of the invocation of the cnd_signal() or cnd_broadcast() function invoked by another thread. The cnd_wait() function must be invoked from a loop that checks whether a condition predicate holdspredicate holds. A condition predicate is an expression constructed from the variables of a function that must be true for a thread to be allowed to continue execution. The thread pauses execution, via cnd_wait(), cnd_timedwait(), or some other mechanism, and is resumed later, presumably when the condition predicate is true and the thread is notified.

Code Block
#include <threads.h>
#include <stdbool.h>
 
extern bool until_finish(void);
extern mtx_t lock;
extern cnd_t condition;
 
void func(void) {
  if (thrd_success != mtx_lock(&lock)) {
    /* Handle error */
  }

  while (until_finish()) {  /* Predicate does not hold */
    if (thrd_success != cnd_wait(&condition, &lock)) {
      /* Handle error */
    }
  }
 
  /* Resume when condition holds */

  if (thrd_success != mtx_unlock(&lock)) {
    /* Handle error */
  }
}

The notification mechanism notifies the waiting thread and allows it to check its condition predicate. The invocation of cnd_signal() or of cnd_broadcast() in another thread cannot precisely determine which waiting thread will be resumed. Condition predicate statements allow notified threads to determine whether they should resume upon receiving the notification. 

Both safety and liveness are concerns when using conditions. The safety property requires that all objects maintain consistent states in a multithreaded environment [Lea 2000]. The liveness property requires that every operation or function invocation execute to completion without interruption.

To guarantee liveness, programs must test the while loop condition before invoking the cnd_wait() function. This early test checks whether another thread has already satisfied the condition predicate and sent a notification. Invoking the cnd_wait() function after the notification has been sent results in indefinite blocking.

To guarantee safety, programs must test the while loop condition after returning from the cnd_wait() function. Although cnd_wait() is intended to block indefinitely until a notification is received, it must still be encased within a loop.The order in which threads execute after receipt of a cnd_broadcast() signal is unspecified. Consequently, an unrelated thread could start executing and discover that its condition predicate is satisfied. Consequently, it could resume execution, although it was required to remain dormant. Consequently, programs must check the condition predicate after the cnd_wait() function returns. A while loop is the best choice for checking the condition predicate both before and after invoking cnd_wait().

Noncompliant Code Example

...

This thread pauses execution using cnd_wait() and resumes when notified, presumably when the list has elements to be consumed. It is possible for the thread to be notified even if the list is still empty, perhaps because the notifying thread used cnd_broadcast(), which notifies all threads. This is usually preferred; see Notification using cnd_broadcast() is frequently preferred over using cnd_signal(). (See CON38-C. Notify all threads waiting on a condition variablePreserve thread safety and liveness when using condition variables for more information.)

Note that a condition A condition predicate is typically the negation of the condition expression in the loop. In this noncompliant code example, the condition predicate for removing an element from a linked list is (list->next != NULL), whereas the condition expression for the while loop condition is (list->next == NULL).

Unfortunately, this This noncompliant code example nests the cnd_wait() function inside a traditional an if block and thus consequently fails to check the condition predicate after the notification is received. If the notification was spurious or malicious, the thread would wake up prematurely.

Code Block
bgColor#FFcccc
langc
#include <stddef.h>
#include <threads.h>
 
struct node_t {
  void *node;
  struct node_t *next;
};
 
struct node_t list;
static mtx_t lock;
static cnd_t condition;
 
void consume_list_element(void) {
  if (thrd_success != mtx_lock(&lock)) {
    /* Handle error */
  }
 
  if (list.next == NULL) {
    if (thrd_success != cnd_wait(&condition, &lock)) {
      /* Handle error */
    }
  }

  /* Proceed when condition holds */

  if (thrd_success != mtx_unlock(&lock)) {
    /* Handle error */
  }
}

...

This compliant solution calls the cnd_wait() function from within a while loop to check the condition both before and after the call to cnd_wait().:

Code Block
bgColor#ccccff
langc
#include <stddef.h>
#include <threads.h>
 
struct node_t {
  void *node;
  struct node_t *next;
};
 
struct node_t list;
static mtx_t lock;
static cnd_t condition;
 
void consume_list_element(void) {
  if (thrd_success != mtx_lock(&lock)) {
    /* Handle error */
  }
 
  while (list.next == NULL) {
    if (thrd_success != cnd_wait(&condition, &lock)) {
      /* Handle error */
    }
  }

  /* Proceed when condition holds */

  if (thrd_success != mtx_unlock(&lock)) {
    /* Handle error */
  }
}

Risk Assessment

Failure to enclose calls to encase the cnd_wait() or cnd_timedwait() functions inside a while loop can lead to indefinite blocking and denial of service (DoS).

Rule

Severity

Likelihood

Detectable

Remediation Cost

Repairable

Priority

Level

CON36-C

Low

Unlikely

Yes

Medium

No

P2

L3

Automated Detection

Tool

Version

Checker

Description

CodeSonar
Include Page
CodeSonar_V
CodeSonar_V

LANG.STRUCT.ICOL
CONCURRENCY.BADFUNC.CNDWAIT

Inappropriate Call Outside Loop
Use of Condition Variable Wait

Cppcheck Premium

Include Page
Cppcheck Premium_V
Cppcheck Premium_V

premium-cert-con36-c
Helix QAC

Include Page
Helix QAC_V
Helix QAC_V

C2027
Klocwork
Include Page
Klocwork_V
Klocwork_V

CERT.CONC.WAKE_IN_LOOP_C


Parasoft C/C++test

Include Page
Parasoft_V
Parasoft_V

CERT_C-CON36-a

Wrap functions that can spuriously wake up in a loop

Polyspace Bug Finder

Include Page
Polyspace Bug Finder_V
Polyspace Bug Finder_V

CERT C: Rule CON36-CChecks for situations where functions that can spuriously wake up are not wrapped in loop (rule fully covered)

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website

Related Guidelines

Key here (explains table format and definitions)

Bibliography

...

Prior to 2018-01-12: CERT: Unspecified Relationship

Bibliography

...

[Lea 2000]

1.3.2, "Liveness"
3.2.2, "Monitor Mechanics"

 


...

Image Removed Image Removed Image RemovedImage Added Image Added Image Added