Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Compound operations are operations that consist of more than one discrete operation. Expressions that include postfix or prefix increment (++), postfix or prefix decrement (--), or compound assignment operators always result in compound operations. Compound assignment expressions use operators such as *=, /=, %=, +=, -=, <<=, >>=, ^= and , and |=. Compound operations on shared variables must be performed atomically to prevent data races.

Noncompliant Code Example (Logical Negation)

This noncompliant code example declares a shared _BoolBool flag variable and provides a toggle_flag() method that negates the current value of flag.: 
Code Block
bgColor
#ffcccc
#FFCCCC
languagecpp
langc
#include <stdbool.h>
 
static 
_Bool
bool flag = 
0
false;
 
void toggle_flag(void) {
  flag = !flag;
}
 
_Bool
bool get_flag(void) {
  return flag;
}

 

Execution of this code may result in a data race because because the value of of flag is is read, negated, and written back.

Consider, for example, two threads that call toggle_flag(). The expected effect of toggling flag twice is that it is restored to its original value. However, the following scenario leaves flag in the incorrect state:

Time

flag=

Thread

Action

1

true

t 1

reads

Reads the current value of flag, true, into a cache

2

true

t 2

reads

Reads the current value of flag, (still) true, into a different cache

3

true

t 1

toggles

Toggles the temporary variable in the cache to false

4

true

t 2

toggles

Toggles the temporary variable in the different cache to false

5

false

t 1

writes

Writes the cache variable's value to flag

6

false

t 2

writes

Writes the different cache variable's value to flag

As a result, the effect of the call by t 2 is not reflected in flag; the program behaves as if toggle_flag() was called only once, not twice.

Noncompliant Code Example (Bitwise Negation)

The toggle_flag() method may also use the compound assignment operator ^= to negate the current value of flag.

 

Code Block
bgColor#ffcccc
langc
static _Bool flag = 0;
 
void toggle_flag() {
  flag ^= 1;
}
 
_Bool get_flag() {
  return flag;
}
This code is also not thread-safe. A data race exists because ^= is a nonatomic compound operation

.

Compliant Solution (Mutex)

This compliant solution restricts access to flag under a mutex lock.

 

:

Code Block
bgColor#ccccff
langc
#include <threads.h>
#include <stdbool.h>
 
static 
_Bool
bool flag = 
0
false;
mtx_t flag_mutex;
int result;

/* Initialize flag_mutex */
bool init_mutex(int type) {
  /* 
initialize
Check 
flag_
mutex type */
  if (
(result
thrd_success != mtx_init(&flag_mutex, 
mtx_plain
type))
== thrd_error) {
 {
    return false;  /* 
handle
Report error */
  }
  return true;
}
 
void toggle_flag(void) {
 
int
 
result;
if (
(result
thrd_success != mtx_lock(&flag_mutex)) 
!= thrd_success)
{
    /* 
handle
Handle error */
  }
  flag 
^
= 
1
!flag;
  if (
(result
thrd_success != mtx_unlock(&flag_mutex)
) != thrd_success
) {
    /* 
handle
Handle error */
  }
}
 
_Bool
bool get_flag(void) {
  
int result; _Bool
bool temp_flag;
  if (
(result
thrd_success != mtx_lock(&flag_mutex)
) != thrd_success
) {
    /* 
handle
Handle error */
  }
  temp_flag = flag;
  if (
(result
thrd_success != mtx_unlock(&flag_mutex)
) != thrd_success
) {
    /* 
handle
Handle error */
  }
  return temp_flag;
}

This solution guards reads and writes to

the 

the flag

 field

field with a lock on the flag_mutex. This lock ensures that changes to flag are visible to all threads. Now, only two execution orders are possible

, one of which is shown in the following scenario

. In one execution order, t1 obtains the mutex and completes the operation before t 2 can acquire the mutex, as shown here:

Time

flag=

Thread

Action

1

true

t 1

reads

Reads the current value of flag, true, into a cache variable

2

true

t 1

toggles

Toggles the cache variable to false

3

false

t 1

writes

Writes the cache variable's value to flag

4

false

t 2

reads

Reads the current value of flag, false, into a different cache variable

5

false

t 2

toggles

Toggles the different cache variable to true

6

true

t 2

writes

Writes the different cache variable's value to flag

The second other execution order involves the same operations, but is similar, except that t 2 starts and finishes before t 1 

Noncompliant Code Example

Compliant Solution (atomic

boolean)

This noncompliant code example declares flag to be of type _Atomic _Bool.

 

_compare_exchange_weak() )

This compliant solution uses atomic variables and a compare-and-exchange operation to guarantee that the correct value is stored in flag. All updates are visible to other threads.

Code Block
bgColor
#ffcccc
#ccccff
langc
static _Atomic _Bool flag = 0; void toggle_flag() { _Bool temp_flag = atomic_load(&flag); temp_flag = !temp_flag; atomic_store( &flag, temp_flag); } _Bool get_flag(
#include <stdatomic.h>
#include <stdbool.h>
 
static atomic_bool flag;

void init_flag(void) {
  
return
atomic_
load
init(&flag, false);
}

This code suffers from the same potential race condition as the first noncompliant code example.

Compliant Solution (atomic boolean)

This compliant solution declares flag to be of type _Atomic _Bool.

Code Block
bgColor#ffcccc
langc
static _Atomic _Bool flag = 0;
  
void toggle_flag(void) {
  _Boolbool old_flag = atomic_load(&flag);
  _Boolbool new_flag;
  do {
    new_flag = !old_flag;
  } while (!atomic_compare_exchange_weak(&flag, &old_flag, new_flag));
}
  
_Boolbool get_flag(void) {
  return atomic_load(&flag);
}

The flag variable is updated using the atomic_compare_exchange_weak() function on the atomic boolean variable. All updates are visible to other threads.

An alternate

An alternative solution is to use the atomic_flag

datatype

data type for managing

boolean

Boolean values atomically.

Noncompliant Code Example (Addition of Primitives)

In this noncompliant code example, multiple threads can invoke the set_values() method to set the a and b fields. Because this code fails to test for integer overflow, users of this code must also ensure that the arguments to the set_values() method can be added without overflow . (See rule see INT32-C. Ensure that operations on signed integers do not result in overflow for more information).)

 

Code Block
bgColor
#ffcccc
#FFCCCC
langc
static int a;
static int b;
 
int get_sum(void) {
  return a + b;
}
 
void set_values(int new_a, int new_b) {
  a = new_a;
  b = new_b;
}

The  get_sum() method contains a race condition. For example, when a and b currently have the values 0 and INT_MAX, respectively, and one thread calls get_sum() while another calls set_values(INT_MAX, 0), the get_sum() method might return either 0 or INT_MAX, or it might overflow. Overflow will occur when the first thread reads a and b after the second thread has set the value of a to INT_MAX

,

but before it has set the value of b to 0.


Noncompliant Code Example (Addition of Atomic Integers)

In this noncompliant code example,  a and  and b are are replaced with atomic integers.

 


Code Block
bgColor
#ffcccc
#FFCCCC
langc
#include <stdatomic.h>

static atomic_
Atomic
int a;
static atomic_
Atomic
int b;

void init_ab(void) {
  atomic_init(&a, 0);
  atomic_init(&b, 0);
}

int get_sum(void) {
  return atomic_load(&a) + atomic_load(&b);
}
 
void set_values(int new_a, int new_b) {
  atomic_store(&a, new_a);
  atomic_store(&b, new_b);
}

 


The simple replacement of the two int fields with atomic integers fails to eliminate the race condition in the sum because the compound operation a.get() + b.get() is still non-atomic. While a sum of some value of a and some value of b will be returned, there is no guarantee that this value represents the sum of the values of a and b at any particular moment.

Compliant Solution (_Atomic struct)

This compliant solution uses an atomic struct, which guarantees that both numbers are read and written together.

Code Block
bgColor#ccccff
langc
#include <stdatomic.h>
  
static _Atomic struct ab_s {
  int a, b;
} ab;
 
void init_ab(void) {
  struct ab_s new_ab = {0, 0};
  atomic_init(&ab, new_ab);
}
 
int get_sum(void) {
  struct ab_s new_ab = atomic_load(&ab);
  return new_ab.a + new_ab.b;
}
 
void set_values(int new_a, int new_b) {
  struct ab_s new_ab = {new_a, new_b};
  atomic_store(&ab, new_ab);
}

On most modern platforms, this will compile to be lock-free.

Compliant Solution (

Addition

Mutex)

This compliant solution synchronizes the protects the set_values() and  and get_sum() methods methods with a mutex to ensure atomicity.:

 

Code Block
bgColor#ccccff
langc
#include <threads.h>
#include <stdbool.h>

static 
_Atomic
int a;
static
_Atomic
 int b;
mtx_t flag_mutex;
int result;

/* Initialize everything */
bool init_all(int type) {
  /* 
initialize
Check 
flag_
mutex type */
  a = 0;
  b = 0;
  if (
(result
thrd_success != mtx_init(&flag_mutex, 
mtx_plain
type)) 
== thrd_error) {
{
    return false;  /* 
handle
Report error */
  }
  return true;
}
 
int get_sum(void) {
int result;

  if (
(result
thrd_success != mtx_lock(&flag_mutex))
!=
 
thrd_success)
{
    /* 
handle
Handle error */
  }
  int sum = 
atomic_load(&
a
)
 + 
atomic_load(&
b
)
;
  if (
(result
thrd_success != mtx_unlock(&flag_mutex))
!=
 
thrd_success)
{
    /* 
handle
Handle error */
  }
  return sum;
}
 
void set_values(int new_a, int new_b) {
int result;

  if (
(result
thrd_success != mtx_lock(&flag_mutex))
!=
 
thrd_success)
{
    /* 
handle
Handle error */
  }
  
atomic_store(&a,
a = new_a
)
;
  
atomic_store(&b,
b = new_b
)
;
  if (
(result
thrd_success != mtx_unlock(&flag_mutex)
) != thrd_success
) {
    /* 
handle
Handle error */
  }
}

 

Thanks to the mutex, it is now possible to add overflow checking to the get_sum()  function without introducing the possibility of a race condition.

Risk Assessment

When operations on shared variables are not atomic, unexpected results can be produced. For example, information can be disclosed inadvertently because one user can receive information about other users.

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

CON42

CON07-C

medium

Medium

probable

Probable

medium

Medium

P8

L2

Automated Detection

Tool

Version

Checker

Description

CodeSonar
Include Page
CodeSonar_V
CodeSonar_V

CONCURRENCY.DATARACE

Data Race

Related Guidelines

CERT Oracle Secure Coding Standard for JavaVNA02-J. Ensure that compound operations on shared variables are atomic

MITRE CWE

CWE-366,

MITRE CWE

CWE-667. Improper locking

 

CWE-413. Improper resource locking

 

CWE-366.

Race condition within a thread

 

CWE-413, Improper resource locking
CWE-567

.

, Unsynchronized access to shared data in a multithreaded context

CERT JavaVNA02-J. Ensure that compound operations on shared variables are atomic

CWE-667, Improper locking

Bibliography

[ISO/IEC 14882:2011]

Section

Subclause 7.

.

17, "Atomics"



Image Added  

 

 

Image Removed      Image Removed      Image RemovedImage Added  Image Added