Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Although common practice has been to programmers often use integers and pointers interchangeably in C, pointer-to-integer and integer-to-pointer conversions are implementation-defined

...

Any pointer type may be converted to an integer type. Except as previously specified, the result is implementation-defined. If the result cannot be represented in the integer type, the behavior is undefined. The result need not be in the range of values of any integer type.

...

.

Do not convert an integer type to a pointer type if the resulting pointer is incorrectly aligned, does not point to an entity of the referenced type, or is a trap representation.

Do not convert a pointer type to an integer type if the result cannot be represented in the integer type. (See undefined behavior 24.)

The mapping between pointers and integers These issues arise because the mapping functions for converting a pointer to an integer or an integer to a pointer must be consistent with the addressing structure of the execution environment. For Issues may arise, for example, not all machines on architectures that have a flat segmented memory model.

Noncompliant Code Example

This example is noncompliant, for example, on The size of a pointer can be greater than the size of an integer, such as in an implementation where pointers are 64 bits and unsigned integers are 32 bits. This code example is noncompliant on such implementations because the result of converting the 64-bit ptr cannot be represented in the 32-bit integer type:

Code Block
bgColor#ffcccc
langc
void f(void) {
  char *ptr;
  /* ... */
  unsigned int number = (unsigned int)ptr;  /* Violation */
  /* ... */
}

Compliant Solution

Any valid pointer to void can be converted to intptr_t or uintptr_t and back with no change in value. (see INT11See INT36-EX2.). The C Standard guarantees that a pointer to void may be converted to or from a pointer to any object type and and back again and that the result must compare equal to the original pointer. Consequently, converting directly from a char * pointer to a uintptr_t, as in this compliant solution, is allowed on implementations that support the uintptr_t type.

Code Block
bgColor#ccccff
langc
#include <stdint.h>
 
void f(void) {
  char *ptr;
  /* ... */
  uintptr_t number = (uintptr_t)ptr;  
  /* ... */
}

Noncompliant Code Example

In this noncompliant code example, the pointer ptr is converted to an integer value. The high-order 9 bits of the number are used to hold a flag value, and the result is converted back into a pointer. This example is noncompliant , for example, on an implementation where pointers are 64 bits and unsigned integers are 32 bits because the result of converting the 64-bit ptr cannot be represented in the 32-bit integer type.

Code Block
bgColor#ffcccc
langc
void func(unsigned int flag) {
  char *ptr;
unsigned int flag;
/* ... */
  unsigned int number = (unsigned int)ptr;
  number = (number & 0x7fffff) | (flag << 23);
  ptr = (char *)number;
}

A similar scheme was used in early versions of Emacs, limiting its portability and preventing the ability to edit files larger than 8MB.Note that this noncompliant code example also violates EXP11-C. Do not make assumptions regarding the layout of structures with bit-fields.

Compliant Solution

This compliant solution uses a struct to provide storage for both the pointer and the flag value. This solution is portable to machines of different word sizes, both smaller and larger than 32 bits, working even when pointers cannot be represented in any integer type. 

Code Block
bgColor#ccccff
langc
struct ptrflag {
  char *pointer;
  unsigned int flag : 9;
} ptrflag;
 
void func(unsigned int flag) {
  char *ptr;
unsigned int flag;
/* ... */
  ptrflag.pointer = ptr;
  ptrflag.flag = flag;
}

Noncompliant Code Example

It is sometimes necessary in low-level kernel or graphics code to access memory at a specific location, requiring a literal integer to pointer conversion. In this noncompliant code, a pointer is set directly to an integer constant, where it is unknown whether the result will be as intended:

...

The result of this assignment is implementation-defined, might not be correctly aligned, might not point to an entity of the referenced type, and might be a trap representation.

Compliant Solution

Adding an explicit cast may help the compiler convert the integer value into a valid pointer. A common technique is to assign the integer to a volatile-qualified object of type intptr_t or uintptr_t and then assign the integer value to the pointer:

Code Block
bgColor#ccccff
langc
unsigned int *g(void) {
  volatile uintptr_t iptr = 0xdeadbeef;
  unsigned int *ptr = (unsigned int *)iptr;
  /* ... */
  return ptr;
}

The volatile qualifier typically prevents the compiler from diagnosing the assignment of an integer to a pointer.

Exceptions

Unfortunately this code cannot be made safe while strictly conforming to ISO C.

A particular platform (that is, hardware, operating system, compiler, and Standard C library) might guarantee that a memory address is correctly aligned for the pointer type, and actually contains a value for that type. A common practice is to use addresses that are known to point to hardware that provides valid values.

Exceptions

INT36-C-EX1: The integer value 0 INT11-EX1: A null pointer can be converted to an integer; it takes on the value 0. Likewise, a 0 integer can be converted to a pointer; it becomes the null pointer.

INT11INT36-C-EX2: Any valid pointer to void can be converted to intptr_t or uintptr_t or their underlying types and back again with no change in value. This exception includes the Use of underlying types if instead of intptr_t and or uintptr_t are typedefs, and any typedefs that denote the same types as intptr_t and uintptr_t is discouraged, however, because it limits portability.

Code Block
bgColor#ccccff
langc
#include <assert.h>
#include <stdint.h>
 
void h(void) {
  intptr_t i = (intptr_t)(void *)&i;
  uintptr_t j = (uintptr_t)(void *)&j;
 
  void *ip = (void *)i;
  void *jp = (void *)j;
 
  assert(ip == &i);
  assert(jp == &j);
}

Risk Assessment

Converting from pointer to integer or vice versa results in unportable code that is not portable and may create unexpected pointers to invalid memory locations.

Recommendation

Rule

Severity

Likelihood

Remediation Cost

Priority

Level

INT11

INT36-C

low

Low

probable

Probable

high

High

P2

L3

Automated Detection

Tool

Version

Checker

Description

Astrée
Include Page
Astrée_V
Astrée_V

pointer-integral-cast

pointer-integral-cast-implicit

function-pointer-integer-cast

function-pointer-integer-cast-implicit

Fully checked
Axivion Bauhaus Suite

Include Page
Axivion Bauhaus Suite_V
Axivion Bauhaus Suite_V

CertC-INT36Fully implemented
Clang
Include Page
Clang_V
Clang_V
-Wint-to-pointer-cast, -Wint-conversionCan detect some instances of this rule, but does not detect all
CodeSonar
Include Page
CodeSonar_V
CodeSonar_V
LANG.CAST.PC.CONST2PTR
LANG.CAST.PC.INT
Conversion: integer constant to pointer
Conversion: pointer/integer
Compass/ROSE
 



Coverity
 
Include Page
 
Coverity_V
Coverity_V
6
PW.
5
POINTER_CONVERSION_LOSES_BITSFully
Implemented
implemented
Helix QAC

Include Page
Helix QAC_V
Helix QAC_V

C0303, C0305, C0306, C0309, C0324, C0326, C0360, C0361, C0362

C++3040, C++3041, C++3042, C++3043, C++3044, C++3045, C++3046, C++3047, C++3048


Klocwork
Include Page
Klocwork_V
Klocwork_V
MISRA.CAST.OBJ_PTR_TO_INT.2012
LDRA tool suite
Include Page
LDRA_V
LDRA_V
94

439 S, 440 S

Fully implemented
PRQA QA-C Include PagePRQA_VPRQA_V0309 (U)
Parasoft C/C++test
Include Page
Parasoft_V
Parasoft_V

CERT_C-INT36-b

A conversion should not be performed between a pointer to object type and an integer type other than 'uintptr_t' or 'intptr_t'

PC-lint Plus

Include Page
PC-lint Plus_V
PC-lint Plus_V

4287

Partially supported: reports casts from pointer types to smaller integer types which lose information

Polyspace Bug Finder

Include Page
Polyspace Bug Finder_V
Polyspace Bug Finder_V

CERT C: Rule INT36-C


Checks for unsafe conversion between pointer and integer (rule partially covered)

PVS-Studio

Include Page
PVS-Studio_V
PVS-Studio_V

V527, V528V542, V566, V601V647, V1091
RuleChecker
Include Page
RuleChecker_V
RuleChecker_V

pointer-integral-cast

pointer-integral-cast-implicit

function-pointer-integer-cast

function-pointer-integer-cast-implicit

Fully checked
SonarQube C/C++ Plugin
Include Page
SonarQube C/C++ Plugin_V
SonarQube C/C++ Plugin_V
S1767Partially implemented

Related Vulnerabilities

Search for vulnerabilities resulting from the violation of this rule on the CERT website.

Related Guidelines

Key here (explains table format and definitions)

Taxonomy

Taxonomy item

Relationship

CERT C
++ Secure Coding Standard
INT11-CPP. Take care when converting from pointer to integer or integer to pointerPrior to 2018-01-12: CERT: Unspecified Relationship
ISO/IEC TR 24772:2013Pointer Casting and Pointer Type Changes [HFC]Prior to 2018-01-12: CERT: Unspecified Relationship
ISO/IEC TS 17961
 (Draft)
:2013Converting a pointer to integer or integer to pointer [intptrconv]
MITRE CWE
Prior to 2018-01-12: CERT: Unspecified Relationship
CWE 2.11CWE-587, Assignment of a Fixed Address to a Pointer2017-07-07: CERT: Partial overlap
CWE 2.11CWE-7042017-06-14: CERT: Rule subset of CWE
CWE 2.11CWE-7582017-07-07: CERT: Rule subset of CWE
CWE 3.1CWE-119, Improper Restriction of Operations within the Bounds of a Memory Buffer2018-10-19:CERT:None
CWE 3.1CWE-466, Return of
pointer value outside of expected range
CWE-587, Assignment of a fixed address to a pointer
Pointer Value Outside of Expected Range2018-10-19:CERT:None

CERT-CWE Mapping Notes

Key here for mapping notes

CWE-758 and INT36-C

Independent( INT34-C, INT36-C, MEM30-C, MSC37-C, FLP32-C, EXP33-C, EXP30-C, ERR34-C, ARR32-C)

CWE-758 = Union( INT36-C, list) where list =

  • Undefined behavior that results from anything other than integer <-> pointer conversion

CWE-704 and INT36-C

CWE-704 = Union( INT36-C, list) where list =

  • Incorrect (?) typecast that is not between integers and pointers

CWE-587 and INT36-C

Intersection( CWE-587, INT36-C) =

  • Setting a pointer to an integer value that is ill-defined (trap representation, improperly aligned, mis-typed, etc)

CWE-587 – INT36-C =

  • Setting a pointer to a valid integer value (eg points to an object of the correct t ype)

INT36-C – CWE-587 =

  • Illegal pointer-to-integer conversion

Intersection(INT36-C,CWE-466) =  ∅  

Intersection(INT36-C,CWE-466) = 

An example explaining the above two equations follows:

static char x[3];

char* foo() {

  int x_int = (int) x; // x_int = 999 eg

  return x_int + 5; // returns 1004 , violates CWE 466

}

...

int y_int = foo(); // violates CWE-466

char* y = (char*) y_int; //  // well-defined but y may be invalid, violates INT36-C

char c = *y; // indeterminate value, out-of-bounds read, violates CWE-119

Bibliography

[ISO/IEC 9899:2011]
Section
6.3.2.3, "Pointers"

...


...

Image Modified Image Modified Image Modified