...
This behavior is more informally called unsigned integer wrapping. Unsigned integer operations can wrap if the resulting value cannot be represented by the underlying representation of the integer. The following table indicates which operators can result in wrapping:
Operator  Wrap  Operator  Wrap  Operator  Wrap  Operator  Wrap 

Yes  Yes  Yes 
 No  
Yes  Yes 
 No 
 No  
Yes 
 No 
 No 
 No  
 No 
 No 
 No 
 No 
 No  Yes 
 No 
 No  
 Yes 
 No 
 No 
 No 
 Yes 
 No 
 No 
 No 
 No 
 No 
 No 
 No 
Yes 
 No 
 Yes 
 No 
The following sections examine specific operations that are susceptible to unsigned integer wrap. When operating on integer types with less precision than int
, integer promotions are applied. The usual arithmetic conversions may also be applied to (implicitly) convert operands to equivalent types before arithmetic operations are performed. Programmers should understand integer conversion rules before trying to implement secure arithmetic operations. (See INT02C. Understand integer conversion rules.)
...
Integer wrap can lead to buffer overflows and the execution of arbitrary code by an attacker.
Rule  Severity  Likelihood  Remediation Cost  Priority  Level 

INT30C  High  Likely  High  P9  L2 
Automated Detection
Tool  Version  Checker  Description  

Astrée 
 integeroverflow  Fully checked  
CodeSonar 
 ALLOC.SIZE.ADDOFLOW  Addition overflow of allocation size  
Compass/ROSE 
Can detect violations of this rule by ensuring that operations are checked for overflow before being performed (Be mindful of exception INT30EX2 because it excuses many operations from requiring validation, including all the operations that would validate a potentially dangerous operation. For instance, adding two  
Coverity 
 INTEGER_OVERFLOW  Implemented  
Klocwork 
 NUM.OVERFLOW CWARN.NOEFFECT.OUTOFRANGE 
LDRA tool suite 
 493 S, 494 S  Partially implemented  
Parasoft C/C++test 
 CERT_CINT30a  Avoid integer overflows  
Polyspace Bug Finder 
 CERT C: Rule INT30C  Checks for:

Rule fully covered.  
PRQA QAC 
 2910 
[C 
], 2911 
[D 
], 2912 
[A 
], 2913 
[S], 3383, 3384, 3385, 3386  Partially implemented  
PRQA QAC++ 
 2910, 2911, 2912, 2913  
PVSStudio 
 V658  
TrustInSoft Analyzer 
 unsigned overflow  Exhaustively verified. 
Related Vulnerabilities
CVE20091385 results from a violation of this rule. The value performs an unchecked subtraction on the length
of a buffer and then adds those many bytes of data to another buffer [xorl 2009]. This can cause a buffer overflow, which allows an attacker to execute arbitrary code.
...
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Related Guidelines
...
Key here (explains table format and definitions)
Taxonomy  Taxonomy item  Relationship 

CERT C 
INT02C. Understand integer conversion rules  Prior to 20180112: CERT: Unspecified Relationship  
CERT C  ARR30C. Do not form or use outofbounds pointers or array subscripts  Prior to 20180112: CERT: Unspecified Relationship 
CERT C  ARR36C. Do not subtract or compare two pointers that do not refer to the same array  Prior to 20180112: CERT: Unspecified Relationship 
CERT C  ARR37C. Do not add or subtract an integer to a pointer to a nonarray object  Prior to 20180112: CERT: Unspecified Relationship 
CERT C  CON08C. Do not assume that a group of calls to independently atomic methods is atomic  Prior to 20180112: CERT: Unspecified Relationship 
ISO/IEC TR 24772:2013  Arithmetic WrapAround Error [FIF] 
Prior to 20180112: CERT: Unspecified Relationship  
CWE 2.11  CWE190, Integer Overflow or Wraparound  20161202: CERT: Rule subset of CWE 
CWE 2.11  CWE131  20170516: CERT: Partial overlap 
CWE 2.11  CWE191  20170518: CERT: Partial overlap 
CWE 2.11  CWE680  20170518: CERT: Partial overlap 
CERTCWE Mapping Notes
Key here for mapping notes
CWE131 and INT30C
 Intersection( INT30C, MEM35C) = Ø
 Intersection( CWE131, INT30C) =
 Calculating a buffer size such that the calculation wraps. This can happen, for example, when using malloc() or operator new[] to allocate an array, multiplying the array item size with the array dimension. An untrusted dimension could cause wrapping, resulting in a toosmall buffer being allocated, and subsequently overflowed when the array is initialized.
 CWE131 – INT30C =
 Incorrect calculation of a buffer size that does not involve wrapping. This includes offbyone errors, for example.
INT30C – CWE131 =
 Integer wrapping where the result is not used to allocate memory.
CWE680 and INT30C
Intersection( CWE680, INT30C) =
 Unsigned integer overflows that lead to buffer overflows
CWE680  INT30C =
 Signed integer overflows that lead to buffer overflows
INT30C – CWE680 =
 Unsigned integer overflows that do not lead to buffer overflows
CWE191 and INT30C
Union( CWE190, CWE191) = Union( INT30C, INT32C) Intersection( INT30C, INT32C) == Ø
Intersection(CWE191, INT30C) =
 Underflow of unsigned integer operation
CWE191 – INT30C =
 Underflow of signed integer operation
INT30C – CWE191 =
 Overflow of unsigned integer operation
Bibliography
[Bailey 2014]  Raising Lazarus  The 20 Year Old Bug that Went to Mars 
[Dowd 2006]  Chapter 6, "C Language Issues" ("Arithmetic Boundary Conditions," pp. 211–223) 
[ISO/IEC 9899:2011]  Subclause 6.2.5, "Types" 
[Seacord 2013b]  Chapter 5, "Integer Security" 
[Viega 2005]  Section 5.2.7, "Integer Overflow" 
[VU#551436] 
[Warren 2002]  Chapter 2, "Basics" 
[Wojtczuk 2008] 
[xorl 2009]  "CVE20091385: Linux Kernel E1000 Integer Underflow" 
...