You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 206 Next »

Compound operations are operations that consist of more than one discrete operation. Expressions that include postfix or prefix increment (++), postfix or prefix decrement (--), or compound assignment operators always result in compound operations. Compound assignment expressions use operators such as *=, /=, %=, +=, -=, <<=, >>=, >>>=, ^= and |= [[JLS 2005]]. Compound operations on shared variables must be performed atomically to prevent [data races] and [race conditions].

For information about the atomicity of a grouping of calls to independently atomic methods that belong to thread-safe classes, see rule VNA03-J. Do not assume that a group of calls to independently atomic methods is atomic.

The Java Language Specification also permits reads and writes of 64-bit values to be non-atomic. For more information, see rule VNA05-J. Ensure atomicity when reading and writing 64-bit values.

Noncompliant Code Example (Logical Negation)

This noncompliant code example declares a shared boolean flag variable and provides a toggle() method that negates the current value of flag.

final class Flag {
  private boolean flag = true;

  public void toggle() {  // Unsafe
    flag = !flag;
  }

  public boolean getFlag() { // Unsafe
    return flag;
  }
}

Execution of this code may result in a data race because the value of flag is read, negated, and written back.

Consider, for example, two threads that call toggle(). The expected effect of toggling flag twice is that it is restored to its original value. However, the following scenario leaves flag in the incorrect state:

Time

flag=

Thread

Action

1

true

t1

reads the current value of flag, true, into a temporary variable

2

true

t2

reads the current value of flag, (still) true, into a temporary variable

3

true

t1

toggles the temporary variable to false

4

true

t2

toggles the temporary variable to false

5

false

t1

writes the temporary variable's value to flag

6

false

t2

writes the temporary variable's value to flag

As a result, the effect of the call by t2 is not reflected in flag; the program behaves as if toggle() was called only once, not twice.

Noncompliant Code Example (Bitwise Negation)

Similarly, the toggle() method can use the compound assignment operator ^= to negate the current value of flag.

final class Flag {
  private boolean flag = true;

  public void toggle() {  // Unsafe
    flag ^= true;  // Same as flag = !flag;
  }

  public boolean getFlag() { // Unsafe
    return flag;
  }
}

This code is also not thread-safe. A data race exists because ^= is a non-atomic compound operation.

Noncompliant Code Example (volatile)

Declaring flag volatile does not help either:

final class Flag {
  private volatile boolean flag = true;

  public void toggle() {  // Unsafe
    flag ^= true;
  }

  public boolean getFlag() { // Safe
    return flag;
  }
}

This code remains unsuitable for multithreaded use because declaring a variable as volatile fails to guarantee the atomicity of compound operations on the variable.

Compliant Solution (Synchronization)

This compliant solution declares both the toggle() and getFlag() methods as synchronized.

final class Flag {
  private boolean flag = true;

  public synchronized void toggle() {
    flag ^= true; // Same as flag = !flag;
  }

  public synchronized boolean getFlag() {
    return flag;
  }
}

This guards reads and writes to the flag field with a lock on the instance, that is, this. This compliant solution ensures that changes are visible to all the threads. Now, only two execution orders are possible, one of which is shown below.

Time

flag=

Thread

Action

1

true

t1

reads the current value of flag, true, into a temporary variable

2

true

t1

toggles the temporary variable to false

3

false

t1

writes the temporary variable's value to flag

4

false

t2

reads the current value of flag, false, into a temporary variable

5

false

t2

toggles the temporary variable to true

6

true

t2

writes the temporary variable's value to flag

The second execution order involves the same operations, but t2 starts and finishes before t1.

Compliance with rule LCK00-J. Use private final lock objects to synchronize classes that may interact with untrusted code can reduce the likelihood of misuse by ensuring that untrusted callers cannot access the lock object.

Compliant Solution (Volatile-Read, Synchronized-Write)

In this compliant solution, the getFlag() method is not synchronized, and flag is declared as volatile. This solution is compliant because the read of flag in the getFlag() method is an atomic operation and the volatile qualification assures visibility. The toggle() method still requires synchronization because it performs a non-atomic operation.

final class Flag {
  private volatile boolean flag = true;

  public synchronized void toggle() {
    flag ^= true; // Same as flag = !flag;
  }

  public boolean getFlag() {
    return flag;
  }
}

This approach is forbidden for getter methods that perform any additional operations other than returning the value of a volatile field without use of synchronization. Unless read performance is critical, this technique may lack significant advantages over synchronization [[Goetz 2006]].

Rule VNA06-J. Do not assume that declaring a reference volatile guarantees visibility of the members of the referenced object also addresses the volatile-read, synchronized-write pattern.

Compliant Solution (Read-Write Lock)

This compliant solution uses a read-write lock to ensure atomicity and visibility.

final class Flag {
  private boolean flag = true;
  private final ReadWriteLock lock = new ReentrantReadWriteLock();
  private final Lock readLock = lock.readLock();
  private final Lock writeLock = lock.writeLock();

  public void toggle() {
    writeLock.lock();
    try {
      flag ^= true; // Same as flag = !flag;
    } finally {
      writeLock.unlock();
    }
  }

  public boolean getFlag() {
    readLock.lock();
    try {
      return flag;
    } finally {
      readLock.unlock();
    }
  }
}

Read-write locks allow shared state to be accessed by multiple readers or a single writer but never both. According to Goetz [[Goetz 2006]]

In practice, read-write locks can improve performance for frequently accessed read-mostly data structures on multiprocessor systems; under other conditions they perform slightly worse than exclusive locks due to their greater complexity.

Profiling the application can determine the suitability of read-write locks.

Compliant Solution (AtomicBoolean)

This compliant solution declares flag as an AtomicBoolean type.

import java.util.concurrent.atomic.AtomicBoolean;

final class Flag {
  private AtomicBoolean flag = new AtomicBoolean(true);

  public void toggle() {
    boolean temp;
    do {
      temp = flag.get();
    } while (!flag.compareAndSet(temp, !temp));
  }

  public AtomicBoolean getFlag() {
    return flag;
  }
}

The flag variable is updated using the compareAndSet() method of the AtomicBoolean class. All updates are visible to other threads.

Noncompliant Code Example (Addition of Primitives)

In this noncompliant code example, multiple threads can invoke the setValues() method to set the a and b fields. Because this class fails to test for integer overflow, users of the Adder class must ensure that the arguments to the setValues() method can be added without overflow. (For more information, see rule NUM00-J. Detect or prevent integer overflow.)

final class Adder {
  private int a;
  private int b;

  public int getSum() {
    return a + b;
  }

  public void setValues(int a, int b) {
    this.a = a;
    this.b = b;
  }
}

The getSum() method contains a race condition. For example, when a and b currently have the values 0 and Integer.MAX_VALUE, respectively, and one thread calls getSum() while another calls setValues(Integer.MAX_VALUE, 0), the getSum() method might return either 0 or Integer.MAX_VALUE, or it might overflow and wrap. Overflow will occur when the first thread reads a and b after the second thread has set the value of a to Integer.MAX_VALUE, but before it has set the value of b to 0.

Note that declaring the variables as volatile fails to resolve the issue because these compound operations involve reads and writes of multiple variables.

Noncompliant Code Example (Addition of Atomic Integers)

In this noncompliant code example, a and b are replaced with atomic integers.

final class Adder {
  private final AtomicInteger a = new AtomicInteger();
  private final AtomicInteger b = new AtomicInteger();

  public int getSum() {
    return a.get() + b.get();
  }

  public void setValues(int a, int b) {
    this.a.set(a);
    this.b.set(b);
  }
}

The simple replacement of the two int fields with atomic integers, in this example, fails to eliminate the race condition because the compound operation a.get() + b.get() is still non-atomic.

Compliant Solution (Addition)

This compliant solution synchronizes the setValues() and getSum() methods to ensure atomicity.

final class Adder {
  private int a;
  private int b;

  public synchronized int getSum() {
    return a + b;
  }

  public synchronized void setValues(int a, int b) {
    this.a = a;
    this.b = b;
  }
}

The operations within the synchronized methods are now atomic with respect to other synchronized methods that lock on that object's monitor (intrinsic lock). It is now possible, for example, to add overflow checking to the synchronized getSum() method without introducing the possibility of a race condition.

Risk Assessment

When operations on shared variables are not atomic, unexpected results can be produced. For example, information can be disclosed inadvertently because one user can receive information about other users.

Guideline

Severity

Likelihood

Remediation Cost

Priority

Level

VNA02-J

medium

probable

medium

P8

L2

Automated Detection

The SureLogic Flashlight tool can diagnose violations of this rule as instance fields with empty locksets.

The Coverity Prevent Version 5.0 ATOMICITY checker can detect the instances of non-atomic update of a concurrently shared value. The result of the update will be determined by the interleaving of thread execution. The GUARDED_BY_VIOLATION checker can detect the instances where thread shared data is accessed without holding an appropriate lock, possibly causing a race condition.

Related Vulnerabilities

Any vulnerabilities resulting from the violation of this rule are listed on the CERT website.

Related Guidelines

MITRE CWE: CWE-667 "Improper Locking"

MITRE CWE: CWE-413 "Improper Resource Locking"

MITRE CWE: CWE-366 "Race Condition within a Thread"

MITRE CWE: CWE-567 "Unsynchronized Access to Shared Data in a Multithreaded Context"

Bibliography

[[API 2006]] Class AtomicInteger
[[Bloch 2008]] Item 66: Synchronize access to shared mutable data
[[Goetz 2006]] 2.3. "Locking"[[JLS 2005]] Chapter 17, Threads and Locks, Section 17.4.5 Happens-Before Order, Section 17.4.3 Programs and Program Order, Section 17.4.8 Executions and Causality Requirements
[[Lea 2000]] Section 2.2.7 The Java Memory Model, Section 2.1.1.1 Objects and Locks
[[Tutorials 2008]] Java Concurrency Tutorial

Issue Tracking

0%

Review List


      07. Visibility and Atomicity (VNA)      

  • No labels