The C Standard identifies the following condition under which division and remainder operations result in undefined behavior (UB):
UB | Description |
The value of the second operand of the |
Ensure that division and remainder operations do not result in divide-by-zero errors.
The result of the /
operator is the quotient from the division of the first arithmetic operand by the second arithmetic operand. Division operations are susceptible to divide-by-zero errors. Overflow can also occur during two's complement signed integer division when the dividend is equal to the minimum (most negative) value for the signed integer type and the divisor is equal to −1.
(See INT32-C. Ensure that operations on signed integers do not result in overflow.)
This noncompliant code example prevents signed integer overflow in compliance with INT32-C. Ensure that operations on signed integers do not result in overflow but fails to prevent a divide-by-zero error during the division of the signed operands s_a
and s_b
:
#include <limits.h> void func(signed long s_a, signed long s_b) { signed long result; if ((s_a == LONG_MIN) && (s_b == -1)) { /* Handle error */ } else { result = s_a / s_b; } /* ... */ } |
This compliant solution tests the division operation to guarantee there is no possibility of divide-by-zero errors or signed overflow:
#include <limits.h> void func(signed long s_a, signed long s_b) { signed long result; if ((s_b == 0) || ((s_a == LONG_MIN) && (s_b == -1))) { /* Handle error */ } else { result = s_a / s_b; } /* ... */ } |
The remainder operator provides the remainder when two operands of integer type are divided.
This noncompliant code example prevents signed integer overflow in compliance with INT32-C. Ensure that operations on signed integers do not result in overflow but fails to prevent a divide-by-zero error during the remainder operation on the signed operands s_a
and s_b
:
#include <limits.h> void func(signed long s_a, signed long s_b) { signed long result; if ((s_a == LONG_MIN) && (s_b == -1)) { /* Handle error */ } else { result = s_a % s_b; } /* ... */ } |
This compliant solution tests the remainder operand to guarantee there is no possibility of a divide-by-zero error or an overflow error:
#include <limits.h> void func(signed long s_a, signed long s_b) { signed long result; if ((s_b == 0 ) || ((s_a == LONG_MIN) && (s_b == -1))) { /* Handle error */ } else { result = s_a % s_b; } /* ... */ } |
A divide-by-zero error can result in abnormal program termination and denial of service.
Rule | Severity | Likelihood | Remediation Cost | Priority | Level |
---|---|---|---|---|---|
INT33-C | Low | Likely | Medium | P6 | L2 |
Tool | Version | Checker | Description |
---|---|---|---|
Astrée | int-division-by-zero int-modulo-by-zero | Fully checked | |
CodeSonar | LANG.ARITH.DIVZERO LANG.ARITH.FDIVZERO | Division by zero Float Division By Zero | |
Compass/ROSE | Can detect some violations of this rule (In particular, it ensures that all operations involving division or modulo are preceded by a check ensuring that the second operand is nonzero.) | ||
Coverity | DIVIDE_BY_ZERO | Fully implemented | |
Cppcheck | zerodiv zerodivcond | Context sensitive analysis of division by zero | |
Klocwork | DBZ.CONST DBZ.CONST.CALL DBZ.GENERAL DBZ.ITERATOR | ||
LDRA tool suite | 43 D, 127 D, 248 S, 629 S, 80 X | Partially implemented | |
Parasoft C/C++test | CERT_C-INT33-a | Avoid division by zero | |
Parasoft Insure++ | Runtime analysis | ||
Polyspace Bug Finder | Checks for:
Rule fully covered. | ||
PRQA QA-C | 2830 [C], 2831 [D], 2832 [A] 2833 [S] | Fully implemented | |
PRQA QA-C++ | 2831, 2832, 2833 | ||
SonarQube C/C++ Plugin | S3518 | ||
PVS-Studio | V609 | ||
TrustInSoft Analyzer | division_by_zero | Exhaustively verified (see one compliant and one non-compliant example). |
Search for vulnerabilities resulting from the violation of this rule on the CERT website.
Key here (explains table format and definitions)
Taxonomy | Taxonomy item | Relationship |
---|---|---|
CERT C | INT32-C. Ensure that operations on signed integers do not result in overflow | Prior to 2018-01-12: CERT: Unspecified Relationship |
CERT Oracle Secure Coding Standard for Java | NUM02-J. Ensure that division and remainder operations do not result in divide-by-zero errors | Prior to 2018-01-12: CERT: Unspecified Relationship |
ISO/IEC TS 17961 | Integer division errors [diverr] | Prior to 2018-01-12: CERT: Unspecified Relationship |
CWE 2.11 | CWE-369, Divide By Zero | 2017-07-07: CERT: Exact |
Key here for mapping notes
CWE-682 = Union( INT33-C, list) where list =
[Seacord 2013b] | Chapter 5, "Integer Security" |
[Warren 2002] | Chapter 2, "Basics" |